Lecture 16 Floating Point II

2007-02-23

Lecturer SOE Dan Garcia

www . cs . berkeley . edu/~ddgarcia

Google takes on Office! \Rightarrow Google Apps: premium "services" (email, instant messaging, calendar, web creation, word processing,

VS

Microsoft

 spreadsheets). Data is there.www.nytimes.com/2007/02/22/technology/22google.html

Review

- Floating Point lets us:

> Exponent tells Significand how much (2i) to count by $(. . ., 1 / 4,1 / 2,1,2, \ldots)$

- Represent numbers containing both integer and fractional parts; makes efficient use of available bits.
- Store approximate values for very large and very small \#s.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (Every desktop or server computer sold since ~1997 follows these conventions)

- Summary (single precision):

$3130 \quad 2322$

23 bits
$\bullet(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times \mathbf{2}^{\text {(Exponent-127) }}$

- Double precision identical, except with exponent bias of 1023 (half, quad similar)

"Father" of the Floating point standard

IEEE Standard 754 for Binary Floating-Point Arithmetic.

www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html

Precision and Accuracy

Don't confuse these two terms!
 Precision is a count of the number bits in a computer word used to represent a value.

Accuracy is a measure of the difference between the actual value of a number and its computer representation.
High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
Example: float pi = 3.14;
pi will be represented using all 24 bits of the significant (highly precise), but is only an approximation (not accurate).

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Representation for 0

-Represent 0?

- exponent all zeroes
- significand all zeroes
- What about sign? Both cases valid.
+0: 00000000000000000000000000000000
-0: 10000000000000000000000000000000

Special Numbers

-What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$???
$1-254$	anything	+ +- fl. pt. \#
255	0	$+/-\infty$
255	nonzero	???

- Professor Kahan had clever ideas; "Waste not, want not"

Representation for Not a Number

-What do I get if I calculate sqrt (-4.0) or 0/0?

- If ∞ not an error, these shouldn't be either
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: op($\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
\begin{aligned}
& \text { b }=1.000 \ldots . .1_{2}{ }^{*} 2^{-126} \\
& =\left(1+0.00 \ldots 1_{2}\right)^{*} 2^{-126} \\
& =\left(1+2^{-23}\right) * 2^{-126} \\
& =2^{-126}+2^{-149} \\
& a-0=2^{-126} \\
& b-a=2^{-149} \\
& \text { Gaps! } \\
& -\infty<\bigcirc_{0}^{1} \bigcirc_{\mathbf{a}}^{\mathbf{b}}+\infty
\end{aligned}
$$

Representation for Denorms (2/2)

-Solution:

- We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no (implied) leading 1, implicit exponent $=-126$.
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num:

$$
b=2^{-148}
$$

Special Numbers Summary

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	$\underline{\text { Denorm }}$
$1-254$	anything	$+/-\mathrm{fl}$ pt. \#
255	$\underline{0}$	$\underline{+/-\infty}$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

Administrivia

- Project 2 up on Thurs, due next next Fri
- After Midterm, just as you wanted
- There are bugs on the Green sheet!
- Check the course web page for details
- If you didn't attend Stallman's talk, you need to re-assess your priorities!
- He's talking AGAIN today (5-6:30pm) in 306 Soda
-"The Free Software Movement and the GNU/Linux Operating System"

Richard Stallman launched the development of the GNU operating system (see www.gnu.org) in 1984. GNU is free software: everyone has the freedom to copy it and redistribute it, as well as to make changes either large or small. The GNU/Linux system, basically the GNU operating system with Linux added, is used on tens of millions of computers today.

Rounding

- When we perform math on real numbers, we have to worry about rounding to fit the result in the significant field.
- The FP hardware carries two extra bits of precision, and then round to get the proper value
- Rounding also occurs when converting: double to a single precision value, or floating point number to an integer

IEEE FP Rounding Modes

Examples in decimal (but, of course, IEEE754 in binary)

- Round towards $+\infty$
- ALWAYS round "up": $2.001 \rightarrow 3,-2.001 \rightarrow-2$
- Round towards - ∞
- ALWAYS round "down": $1.999 \rightarrow$ 1, -1.999 \rightarrow-2
- Truncate
- Just drop the last bits (round towards 0)
- Unbiased (default mode). Midway? Round to even
- Normal rounding, almost: $2.4 \rightarrow 2,2.6 \rightarrow 3,2.5 \rightarrow 2,3.5 \rightarrow 4$
- Round like you learned in grade school (nearest int)
- Except if the value is right on the borderline, in which case we round to the nearest EVEN number
- Insures fairness on calculation
- This way, half the time we round up on tie, the other half time we round down. Tends to balance out inaccuracies

Peer Instruction

What is the decimal equivalent of the floating pt \# above?

```
1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
8: -129 * 2^7
```


Peer Instruction

1. Converting float $->$ int $->$ float produces same float number
2. Converting int $->$ float $->$ int produces same int number
3. FP add is associative:
```
    (x+y)+z = x+(y+z)
```

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
Garcia, Spring 2007 © UCB

Peer Instruction

- Let $f(1,2)=$ \# of floats between 1 and 2
- Let $f(2,3)=$ \# of floats between 2 and 3

$$
\begin{aligned}
& 1: f(1,2)<f(2,3) \\
& 2: f(1,2)=f(2,3) \\
& 3: f(1,2)>f(2,3)
\end{aligned}
$$

"And in conclusion..."

-Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	anything	$+/-\mathrm{fl}. \mathrm{pt}. \mathrm{\#}$
255	$\underline{0}$	$\underline{+/-\infty}$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

- 4 rounding modes (default: unbiased)
- MIPS FL ops complicated, expensive

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

FP Addition

- More difficult than with integers
- Can’t just add significands
-How do we do it?
- De-normalize to match exponents
- Add significands to get resulting one
- Keep the same exponent
- Normalize (possibly changing exponent)
- Note: If signs differ, just perform a subtract instead.

MIPS Floating Point Architecture (1/4)

- MIPS has special instructions for floating point operations:
- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
- These instructions are far more complicated than their integer counterparts. They require special hardware and usually they can take much longer to compute.

MIPS Floating Point Architecture (2/4)

- Problems:
- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.

- Coprocessor 1: FP chip
- contains 32 32-bit registers: \$f0, \$f1, ...
- most registers specified in .s and .d instruction refer to this set
- separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3,..., \$f30/\$f31

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
-Today, cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
$\cdot m f c 0, m t c 0, m f c 1, m t c 1, e t c$.
- Appendix pages A-70 to A-74 contain many, many more FP operations.

Example: Representing 1/3 in MIPS

-1/3
$=0.33333 \ldots_{10}$
$=0.25+0.0625+0.015625+0.00390625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
$=0.0101010101 \ldots 2^{*} 2^{0}$
$=1.0101010101 \ldots{ }^{2}$ * 2^{-2}

- Sign: 0
- Exponent $=-2+127=125=01111101$
- Significand $=0101010101$...

Casting floats to ints and vice versa

(int) floating_point_expression
Coerces and converts it to the nearest integer (C uses truncation)
i $=$ (int) (3.14159 * f);
(float) integer_expression converts integer to nearest floating point f = f + (float) i;

int \rightarrow float \rightarrow int

if (i == (int) ((float) i)) \{ printf("true");
\}

- Will not always print "true"
- Most large values of integers don't have exact floating point representations!
- What about double?

float \rightarrow int \rightarrow float

if (f == (float) ((int) f)) \{ printf("true");
\}

- Will not always print "true"
- Small floating point numbers (<1) don't have integer representations
- For other numbers, rounding errors

Floating Point Fallacy

- FP add associative: FALSE!
$\cdot x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}$, and $z=1.0$
$\cdot x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$ $=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=\underline{0.0}$
$\cdot(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$

$$
=(0.0)+1.0=1.0
$$

- Therefore, Floating Point add is not associative!
-Why? FP result approximates real result!
- This example: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38}+1.0$ in floating point representation is still 1.5×10^{38}

