
CS61C L17 MIPS Instruction Format III (1) Spring 2007 © UCB

Torrents “faster than
pizza delivery!” ⇒

BitTorrent, Inc., with the backing of four 
major movie studios, is launching their 
marketplace of over 3,000 legal movies 

and television shows today! 

“Full Throttled” TA Brian Nguyen

inst.eecs.berkeley.edu/~cs61c-tc

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

Lecture 17
Instruction Representation III

2007-02-26

www.bittorrent.com

CS61C L17 MIPS Instruction Format III (2) Spring 2007 © UCB

Review

• MIPS Machine Language Instruction: 
32 bits representing a single instruction

• Branches use PC-relative addressing, 
Jumps use absolute addressing.

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

CS61C L17 MIPS Instruction Format III (3) Spring 2007 © UCB

Outline

• Disassembly

• Pseudoinstructions

• “True” Assembly Language (TAL) vs. 
“MIPS” Assembly Language (MAL)

CS61C L17 MIPS Instruction Format III (4) Spring 2007 © UCB

Decoding Machine Language
• How do we convert 1s and 0s to 

assembly language and to C code?
Machine language ⇒ assembly ⇒ C?

• For each 32 bits:
1. Look at opcode to distinquish between R-

Format, J-Format, and I-Format.
2. Use instruction format to determine which 

fields exist. 
3. Write out MIPS assembly code, 

converting each field to name, register 
number/name, or decimal/hex number.

4. Logically convert this MIPS code into 
valid C code.  Always possible? Unique?

CS61C L17 MIPS Instruction Format III (5) Spring 2007 © UCB

Decoding Example (1/7)

• Here are six machine language 
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

• Let the first instruction be at address 
4,194,304ten (0x00400000hex).

• Next step: convert hex to binary

CS61C L17 MIPS Instruction Format III (6) Spring 2007 © UCB

Decoding Example (2/7)

• The six machine language instructions in 
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3



CS61C L17 MIPS Instruction Format III (7) Spring 2007 © UCB

Decoding Example (3/7)
• Select the opcode (first 6 bits) 

to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Look at opcode: 
0 means R-Format,
2 or 3 mean J-Format, 
otherwise I-Format.

• Next step: separation of fields

R
R
I
R
I
J

Format:

CS61C L17 MIPS Instruction Format III (8) Spring 2007 © UCB

Decoding Example (4/7)

• Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

• Next step: translate (“disassemble”) to 
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS61C L17 MIPS Instruction Format III (9) Spring 2007 © UCB

Decoding Example (5/7)

• MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000     or    $2,$0,$0
0x00400004     slt $8,$0,$5
0x00400008     beq $8,$0,3
0x0040000c     add   $2,$2,$4
0x00400010     addi $5,$5,-1
0x00400014     j     0x100001

• Better solution: translate to more 
meaningful MIPS instructions (fix the 
branch/jump and add labels, registers)

CS61C L17 MIPS Instruction Format III (10) Spring 2007 © UCB

Decoding Example (6/7)

• MIPS Assembly (Part 2):

or    $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• Next step: translate to C code 
(must be creative!)

CS61C L17 MIPS Instruction Format III (11) Spring 2007 © UCB

Decoding Example (7/7)
• After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand; 
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C 
Idea: Instructions are 
just numbers, code is 
treated like data

or   $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add  $v0,$v0,$a0
addi $a1,$a1,-1
j    Loop

Exit:

CS61C L17 MIPS Instruction Format III (12) Spring 2007 © UCB

Administrivia

• Midterm review session by TAs is this 
Sunday at 2:00PM in 10 Evans

• Midterm is next Monday at 7:00PM in 
2050 VLSB

• Sample midterm is online
• Lectures and reading materials fair game
• Fix green sheet errors on website

• Project 2 is due March 9 at 11:59PM
• Highly recommended that you start 
before the midterm!



CS61C L17 MIPS Instruction Format III (13) Spring 2007 © UCB

Review from before: lui
• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add    $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler 
would this for us automatically?

If number too big, then just automatically 
replace addi with lui, ori, add

CS61C L17 MIPS Instruction Format III (14) Spring 2007 © UCB

True Assembly Language (1/3)

• Pseudoinstruction: A MIPS instruction 
that doesn’t turn directly into a machine 
language instruction, but into other MIPS 
instructions

• What happens with pseudo-instructions?
• They’re broken up by the assembler into 
several “real” MIPS instructions.

• Some examples follow

CS61C L17 MIPS Instruction Format III (15) Spring 2007 © UCB

Example Pseudoinstructions

• Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS61C L17 MIPS Instruction Format III (16) Spring 2007 © UCB

Example Pseudoinstructions

• Load Address: How do we get the 
address of an instruction or global 
variable into a register?
la reg,label
Again if value fits in 16 bits:
addi reg,$zero,label_value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS61C L17 MIPS Instruction Format III (17) Spring 2007 © UCB

True Assembly Language (2/3)

• Problem:
• When breaking up a pseudo-instruction, 
the assembler may need to use an extra 
register

• If it uses any regular register, it’ll overwrite 
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for 
“assembler temporary”) that assembler 
will use to break up pseudo-instructions.

• Since the assembler may use this at any 
time, it’s not safe to code with it.

CS61C L17 MIPS Instruction Format III (18) Spring 2007 © UCB

Example Pseudoinstructions

• Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0



CS61C L17 MIPS Instruction Format III (19) Spring 2007 © UCB

Example Pseudoinstructions
• Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

• How do we avoid confusion about whether 
we are talking about MIPS assembler with 
or without pseudoinstructions?

CS61C L17 MIPS Instruction Format III (20) Spring 2007 © UCB

True Assembly Language (3/3)

• MAL (MIPS Assembly Language): the set 
of instructions that a programmer may 
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of 
instructions that can actually get 
translated into a single machine 
language instruction (32-bit binary string)

• A program must be converted from MAL 
into TAL before translation into 1s & 0s.

CS61C L17 MIPS Instruction Format III (21) Spring 2007 © UCB

Questions on Pseudoinstructions

• Question:
• How does MIPS assembler / SPIM 
recognize pseudo-instructions?

• Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move

• It looks for special cases where the 
operand is incorrect for the operation 
and tries to handle it gracefully

CS61C L17 MIPS Instruction Format III (22) Spring 2007 © UCB

Rewrite TAL as MAL

• TAL:
or    $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• This time convert to MAL 
• It’s OK for this exercise to 
make up MAL instructions

CS61C L17 MIPS Instruction Format III (23) Spring 2007 © UCB

Rewrite TAL as MAL (Answer)
• TAL: or    $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• MAL:
li $v0,0

Loop: ble $a1,$zero,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:

CS61C L17 MIPS Instruction Format III (24) Spring 2007 © UCB

Peer Instruction Answer
• Which of the instructions below are 
MAL and which are TAL?

i.   addi $t0, $t1, 40000
ii.  beq $s0, 10, Exit
iii. sub $t0, $t1, 1

40,000 > +32,767 =>lui,ori

sub: both must be registers;
even if it was subi, 
there is no subi in TAL; 
generates addi $t0,$t1, -1

Beq: both must be registers
Exit: if > 215, then MAL

ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT



CS61C L17 MIPS Instruction Format III (25) Spring 2007 © UCB

In Conclusion

• Disassembly is simple and starts by 
decoding opcode field.

• Be creative, efficient when authoring C

• Assembler expands real instruction set 
(TAL) with pseudoinstructions (MAL)

• Only TAL can be converted to raw binary
• Assembler’s job to do conversion
• Assembler uses reserved register $at
• MAL makes it much easier to write MIPS


