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Review

• MIPS Machine Language Instruction: 
32 bits representing a single instruction

• Branches use PC-relative addressing, 
Jumps use absolute addressing.

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode
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Outline

• Disassembly

• Pseudoinstructions

• “True” Assembly Language (TAL) vs. 
“MIPS” Assembly Language (MAL)

CS61C L17 MIPS Instruction Format III (4) Spring 2007 © UCB

Decoding Machine Language
• How do we convert 1s and 0s to 

assembly language and to C code?
Machine language ⇒ assembly ⇒ C?

• For each 32 bits:
1. Look at opcode to distinquish between R-

Format, J-Format, and I-Format.
2. Use instruction format to determine which 

fields exist. 
3. Write out MIPS assembly code, 

converting each field to name, register 
number/name, or decimal/hex number.

4. Logically convert this MIPS code into 
valid C code.  Always possible? Unique?
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Decoding Example (1/7)

• Here are six machine language 
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

• Let the first instruction be at address 
4,194,304ten (0x00400000hex).

• Next step: convert hex to binary
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Decoding Example (2/7)

• The six machine language instructions in 
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3
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Decoding Example (3/7)
• Select the opcode (first 6 bits) 

to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Look at opcode: 
0 means R-Format,
2 or 3 mean J-Format, 
otherwise I-Format.

• Next step: separation of fields

R
R
I
R
I
J

Format:
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Decoding Example (4/7)

• Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

• Next step: translate (“disassemble”) to 
MIPS assembly instructions

R
R
I
R
I
J

Format:
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Decoding Example (5/7)

• MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000     or    $2,$0,$0
0x00400004     slt $8,$0,$5
0x00400008     beq $8,$0,3
0x0040000c     add   $2,$2,$4
0x00400010     addi $5,$5,-1
0x00400014     j     0x100001

• Better solution: translate to more 
meaningful MIPS instructions (fix the 
branch/jump and add labels, registers)
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Decoding Example (6/7)

• MIPS Assembly (Part 2):

or    $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• Next step: translate to C code 
(must be creative!)
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Decoding Example (7/7)
• After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand; 
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C 
Idea: Instructions are 
just numbers, code is 
treated like data

or   $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add  $v0,$v0,$a0
addi $a1,$a1,-1
j    Loop

Exit:
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Administrivia

• Midterm review session by TAs is this 
Sunday at 2:00PM in 10 Evans

• Midterm is next Monday at 7:00PM in 
2050 VLSB

• Sample midterm is online
• Lectures and reading materials fair game
• Fix green sheet errors on website

• Project 2 is due March 9 at 11:59PM
• Highly recommended that you start 
before the midterm!
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Review from before: lui
• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add    $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler 
would this for us automatically?

If number too big, then just automatically 
replace addi with lui, ori, add
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True Assembly Language (1/3)

• Pseudoinstruction: A MIPS instruction 
that doesn’t turn directly into a machine 
language instruction, but into other MIPS 
instructions

• What happens with pseudo-instructions?
• They’re broken up by the assembler into 
several “real” MIPS instructions.

• Some examples follow
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Example Pseudoinstructions

• Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits
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Example Pseudoinstructions

• Load Address: How do we get the 
address of an instruction or global 
variable into a register?
la reg,label
Again if value fits in 16 bits:
addi reg,$zero,label_value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS61C L17 MIPS Instruction Format III (17) Spring 2007 © UCB

True Assembly Language (2/3)

• Problem:
• When breaking up a pseudo-instruction, 
the assembler may need to use an extra 
register

• If it uses any regular register, it’ll overwrite 
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for 
“assembler temporary”) that assembler 
will use to break up pseudo-instructions.

• Since the assembler may use this at any 
time, it’s not safe to code with it.
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Example Pseudoinstructions

• Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0
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Example Pseudoinstructions
• Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

• How do we avoid confusion about whether 
we are talking about MIPS assembler with 
or without pseudoinstructions?
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True Assembly Language (3/3)

• MAL (MIPS Assembly Language): the set 
of instructions that a programmer may 
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of 
instructions that can actually get 
translated into a single machine 
language instruction (32-bit binary string)

• A program must be converted from MAL 
into TAL before translation into 1s & 0s.
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Questions on Pseudoinstructions

• Question:
• How does MIPS assembler / SPIM 
recognize pseudo-instructions?

• Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move

• It looks for special cases where the 
operand is incorrect for the operation 
and tries to handle it gracefully
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Rewrite TAL as MAL

• TAL:
or    $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• This time convert to MAL 
• It’s OK for this exercise to 
make up MAL instructions
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Rewrite TAL as MAL (Answer)
• TAL: or    $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• MAL:
li $v0,0

Loop: ble $a1,$zero,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:
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Peer Instruction Answer
• Which of the instructions below are 
MAL and which are TAL?

i.   addi $t0, $t1, 40000
ii.  beq $s0, 10, Exit
iii. sub $t0, $t1, 1

40,000 > +32,767 =>lui,ori

sub: both must be registers;
even if it was subi, 
there is no subi in TAL; 
generates addi $t0,$t1, -1

Beq: both must be registers
Exit: if > 215, then MAL

ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT
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In Conclusion

• Disassembly is simple and starts by 
decoding opcode field.

• Be creative, efficient when authoring C

• Assembler expands real instruction set 
(TAL) with pseudoinstructions (MAL)

• Only TAL can be converted to raw binary
• Assembler’s job to do conversion
• Assembler uses reserved register $at
• MAL makes it much easier to write MIPS


