inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures

Lecture 18 – Running a Program I aka Compiling, Assembling, Linking, Loading

Lecturer SOE Dan Garcia

Router Security Hole! ⇒

Huge security hole has been

found – if you have a home router, crackers can break in and replace your bank's web page with their 'faked' web page (it's called pharming) and gather your information!

www.technologyreview.com/Infotech/18231/ CS61C L18 Running a Program I (1) Garcia, Spring 2007 © UCB

- Disassembly is simple and starts by decoding opcode field.
 - Be creative, efficient when authoring C
- Assembler expands real instruction set (TAL) with pseudoinstructions (MAL)
 - Only TAL can be converted to raw binary
 - Assembler's job to do conversion
 - Assembler uses reserved register \$at
 - MAL makes it <u>much</u> easier to write MIPS

Overview

Interpretation vs Translation

Translating C Programs

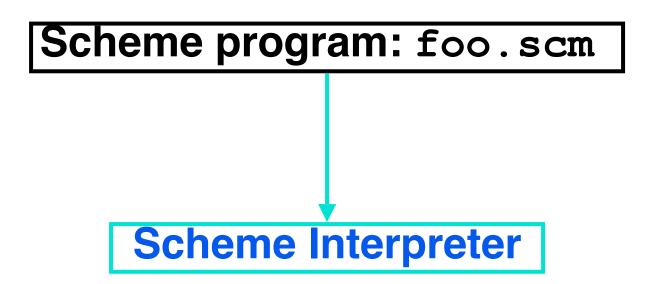
- Compiler
- Assembler
- Linker (next time)
- Loader (next time)
- An Example (next time)

Language Execution Continuum

• An *Interpreter* is a program that executes other programs.

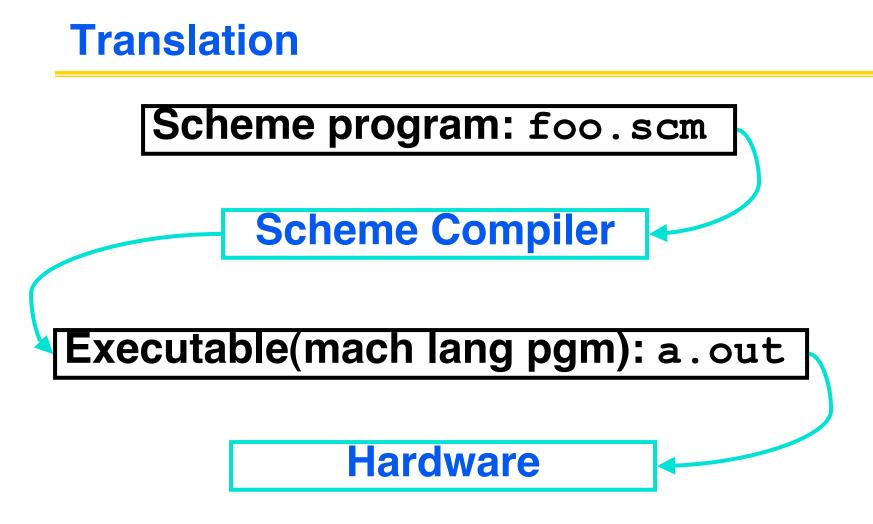

Scheme	heme Java bytecode	
Java C++ C	Assembly	machine language
Easy to program Inefficient to interpret		Efficient to interpret Difficult to program

- Language *translation* gives us another option.
- In general, we interpret a high level language when efficiency is not critical and translate to a lower level language to improve performance



Interpretation vs Translation

- How do we run a program written in a source language?
- Interpreter: Directly executes a program in the source language
- Translator: Converts a program from the source language to an equivalent program in another language
- For example, consider a Scheme program foo.scm



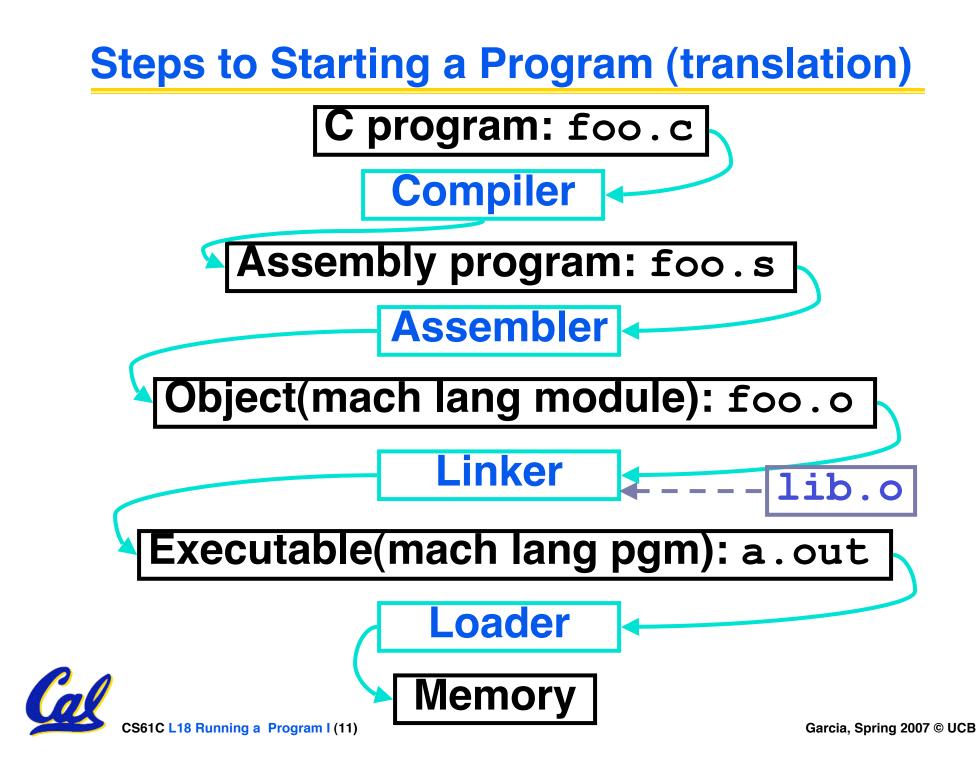
^oScheme Interpreter is just a program that reads a scheme program and performs the functions of that scheme program.

Scheme Compiler is a translator from Scheme to machine language.

Interpretation

- Any good reason to interpret machine language in software?
- SPIM useful for learning / debugging
- Apple Macintosh conversion
 - Switched from Motorola 680x0 instruction architecture to PowerPC.
 - Now similar issue with switch to x86.
 - Could require all programs to be retranslated from high level language
 - Instead, let executables contain old and/or new machine code, interpret old code in software if necessary (emulation)

Interpretation vs. Translation? (1/2)

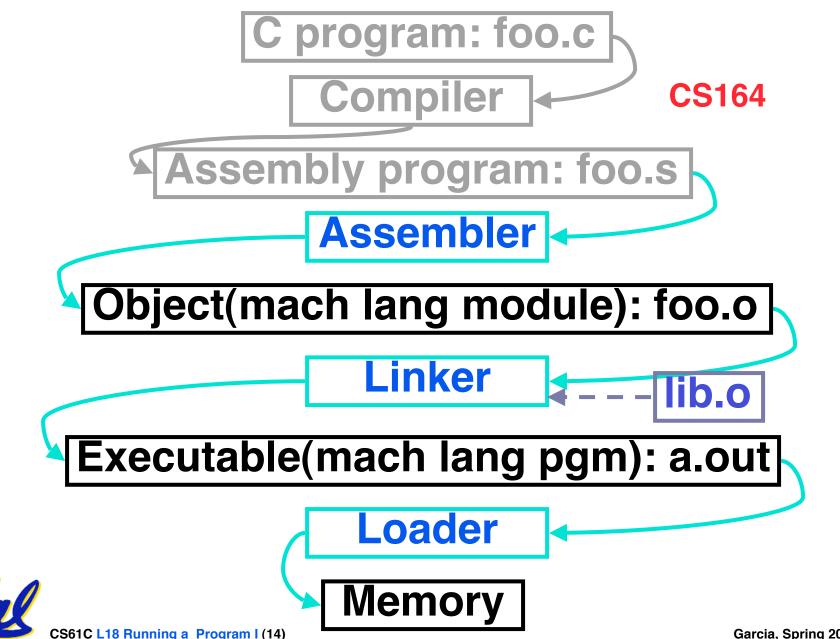

- Generally easier to write interpreter
- Interpreter closer to high-level, so can give better error messages (e.g., SPIM)
 - Translator reaction: add extra information to help debugging (line numbers, names)
- Interpreter slower (10x?) but code is smaller (1.5X to 2X?)
- Interpreter provides instruction set independence: run on any machine
 - Apple switched to PowerPC. Instead of retranslating all SW, let executables contain old and/or new machine code, interpret old code in software if necessary

Interpretation vs. Translation? (2/2)

- Translated/compiled code almost always more efficient and therefore higher performance:
 - Important for many applications, particularly operating systems.
- Translation/compilation helps "hide" the program "source" from the users:
 - One model for creating value in the marketplace (eg. Microsoft keeps all their source code secret)
 - Alternative model, "open source", creates value by publishing the source code and fostering a community of developers.

Compiler

- Input: High-Level Language Code (e.g., C, Java such as foo.c)
- Output: Assembly Language Code (e.g., foo.s for MIPS)
- Note: Output *may* contain pseudoinstructions
- <u>Pseudoinstructions</u>: instructions that assembler understands but not in machine (last lecture) For example:
- mov \$s1,\$s2 ⇒ or \$s1,\$s2,\$zero



Administrivia...

- Exam on monday (7-10pm 2050 VLSB)
 - You're responsible for all material up through Fri
- Project due next Friday

Where Are We Now?

Assembler

- Input: Assembly Language Code (e.g., foo.s for MIPS)
- Output: Object Code, information tables (e.g., foo.o for MIPS)
- Reads and Uses Directives
- Replace Pseudoinstructions
- Produce Machine Language
- Creates Object File

Assembler Directives (p. A-51 to A-53)

Give directions to assembler, but do not produce machine instructions

.text: Subsequent items put in user text segment (machine code)

.data: Subsequent items put in user data segment (binary rep of data in source file)

.globl sym: declares sym global and can be referenced from other files

.asciiz str: Store the string str in memory and null-terminate it

.word w1...wn: Store the *n* 32-bit quantities in successive memory words

Pseudoinstruction Replacement

- Asm. treats convenient variations of machine language instructions as if real instructions Pseudo: Real:
 - subu \$sp,\$sp,32 addiu \$sp,\$sp,-32
 sd \$a0, 32(\$sp) sw \$a0, 32(\$sp)
 - sw \$a0, 32(\$sp) sw \$a1, 36(\$sp)
 - mul \$t6,\$t5 mflo \$t7
 - addiu \$t0,\$t6,1
 - slti \$at,\$t0,101
 bne \$at,\$0,100p
 - lui \$at,left(str)
 ori \$a0,\$at,right(str)

la \$a0, str

mul \$t7,\$t6,\$t5

addu \$t0,\$t6,1

ble \$t0,100,loop

Producing Machine Language (1/3)

Simple Case

- Arithmetic, Logical, Shifts, and so on.
- All necessary info is within the instruction already.
- What about Branches?
 - PC-Relative
 - So once pseudo-instructions are replaced by real ones, we know by how many instructions to branch.
- So these can be handled.

Producing Machine Language (2/3)

"Forward Reference" problem

• Branch instructions can refer to labels that are "forward" in the program:

	or	\$v0,\$0,\$0
L1:	slt	\$t0,\$0,\$a1
	beq	\$t0,\$0, L 2
	addi	\$a1,\$a1,-1
	j	L1
L2:	add	\$t1,\$a0,\$a1

- Solved by taking 2 passes over the program.
 - First pass remembers position of labels
 - Second pass uses label positions to generate code

Producing Machine Language (3/3)

- What about jumps (j and jal)?
 - Jumps require absolute address.
 - So, forward or not, still can't generate machine instruction without knowing the position of instructions in memory.
- What about references to data?
 - •la gets broken up into lui and ori
 - These will require the full 32-bit address of the data.
- These can't be determined yet, so we create two tables...

Symbol Table

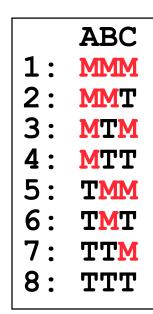
- List of "items" in this file that may be used by other files.
- What are they?
 - Labels: function calling
 - Data: anything in the .data section; variables which may be accessed across files

Relocation Table

- List of "items" for which this file needs the address.
- What are they?
 - Any label jumped to: j or jal
 - internal
 - external (including lib files)
 - Any piece of data
 - such as the la instruction

Object File Format

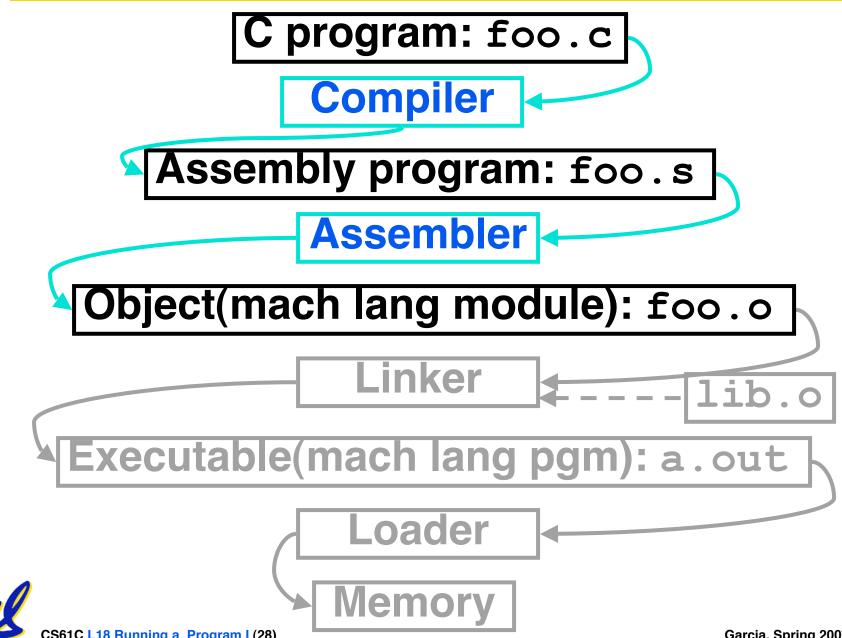
- <u>object file header</u>: size and position of the other pieces of the object file
- <u>text segment</u>: the machine code
- <u>data segment</u>: binary representation of the data in the source file
- relocation information: identifies lines of code that need to be "handled"
- <u>symbol table</u>: list of this file's labels and data that can be referenced
- debugging information
- A standard format is ELF (except MS)


http://www.skyfree.org/linux/references/ELF_Format.pdf

Which of the instructions below are MAL and which are TAL?

- A. addi \$t0, \$t1, 40000
- B. beq \$s0, 10, Exit

Garcia, Spring 2007 © UCB


CS61C L18 Running a Program I (24)

- 1. Assembler knows where a module's data & instructions are in relation to other modules.
- 2. Assembler will ignore the instruction Loop:nop because it does nothing.
- 3. Java designers used a translater AND interpreter (rather than just a translater) mainly because of (at least 1 of): ease of writing, better error msgs, smaller object code.

ABC דדד 2: FFT 3: $\mathbf{T}\mathbf{T}\mathbf{T}$ **4** · ፑጥጥ 5. чтг 6: ͲͲͲ 7: ͲͲϝ 8: ጥጥጥ

CS61C L18 Running a Program I (26)

And in conclusion...

CS61C L18 Running a Program I (28)

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

CS61C L18 Running a Program I (29)

Integer Multiplication (1/3)

• Paper and pencil example (unsigned):

Multiplicand	1000	8
Multiplier	<u>x1001</u>	9
_	1000	
	0000	
0	000	
<u>+10</u>	00	
010	01000	

• m bits x n bits = m + n bit product

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
 - 32-bit value x 32-bit value = 64-bit value
- Syntax of Multiplication (signed):
 - mult register1, register2
 - Multiplies 32-bit values in those registers & puts 64-bit product in special result regs:
 - puts product upper half in hi, lower half in lo
 - hi and lo are 2 registers separate from the 32 general purpose registers
 - Use mfhi register & mflo register to move from hi, lo to another register

Integer Multiplication (3/3)

• Example:

- in C: a = b * c;
- in MIPS:
 - Iet b be \$s2; let c be \$s3; and let a be \$s0 and \$s1 (since it may be up to 64 bits)

mult	\$s2,\$s3	# b	*c
mfhi	\$s0	# u	pper half of
		# p	roduct into \$s0
mflo	\$s1	# 1	ower half of
		# p	roduct into \$s1

• Note: Often, we only care about the lower half of the product.

 Paper and pencil example (unsigned): 1001 Quotient Divisor 1000|1001010 Dividend -100010 101 1010 -100010 Remainder (or Modulo result)


Dividend = Quotient x Divisor + Remainder

Integer Division (2/2)

- Syntax of Division (signed):
 - •div register1, register2
 - Divides 32-bit register 1 by 32-bit register 2:
 - puts remainder of division in hi, quotient in 10
- Implements C division (/) and modulo (%)
- Example in C: a = c / d; b = c % d;
- in MIPS: a⇔\$s0;b⇔\$s1;c⇔\$s2;d⇔\$s3

div	\$s2,\$s3	#	10=0	c/d,	hi=c%d
mflo	\$s0	#	get	quo	tient
mfhi	\$s1	#	get	rem	ainder

