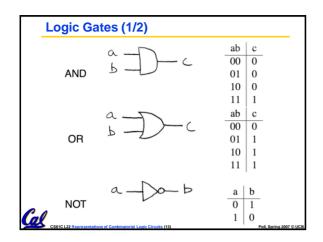
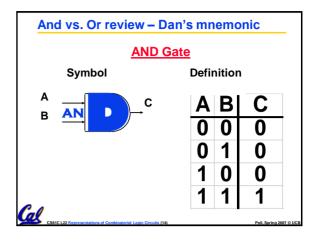
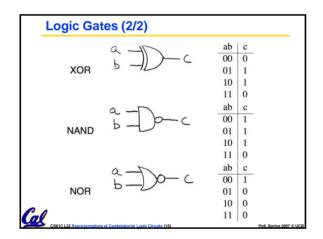


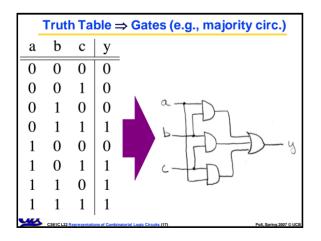
 State elements are used to: 	
Build memories	
Control the flow of information be state elements and combinational	
 D-flip-flops used to build regis 	sters
 Clocks tell us when D-flip-flop 	s change
 Setup and Hold times import 	tant
• We pipeline long-delay CL for	faster clock
Finite State Machines extreme	ly useful
Represent states and transitions	S

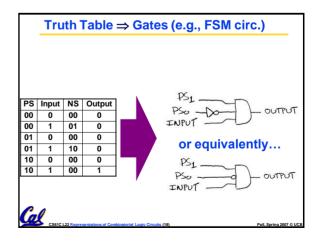


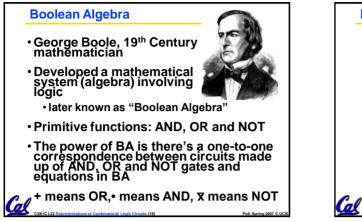

TT Example #1:	1 iff or	ne (not both) a,b=1
а	b	У
0	0	0
0	1	1
1	0	1
1	1	0
CS61CL22 Representations of Combinatorial Lo	aic Circuits (9)	Poll. Spring 2007 (

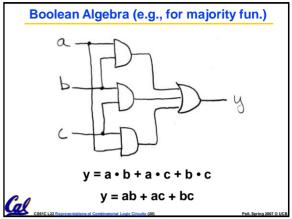

TT Example #2: 2-bi	t ad	der		
• 2	Α	В	C	
AB	$a_1 a_0$	b_1b_0	$c_2 c_1 c_0$ 000	
- 1 - 1	00 00	00 01	000	
21 21	00	10	010	
Y Y	00	11	011	
	01 01	00 01	001 010	
	01	10	010	How
	01	11	100	
	10	00	010	Many
31	10 10	01 10	011 100	Rows?
- 1	10	11	101	
•	11	00	011	
Ċ	11	01	100	
Cal C	11 11	10 11	101 110	
CS61C L22 Representations of Combinatorial Logic Circuits	10)		115	Poll. Spring 2007 © UCB

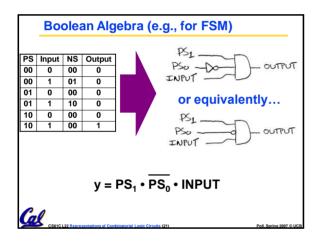
TT Example	TT Example #3: 32-bit unsigned adder						
Α	В	C					
000 0	000 0	000 00					
000 0	000 1	000 01					
		• How					
•	•	. Many Rows?					
•	•	•					
111 1	111 1	111 10					
CS61C L22 Representations of Con	thinstorial Logic Circuits (11)	Poll. Spring 2007 © UCB					

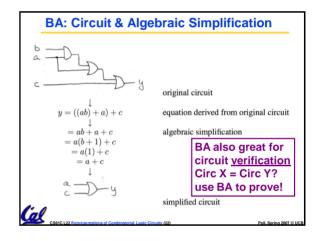

TT Example	#3 :	3-in	put	majority circuit
	а	b	с	У
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	
CS61C L22 Representations of Cer	1	1	1	Poll. Spring 2007 © UC

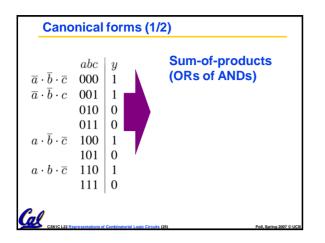


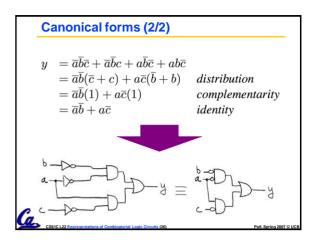


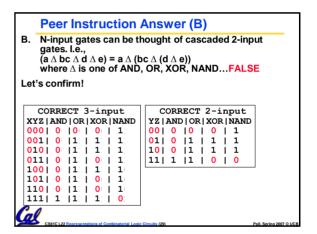


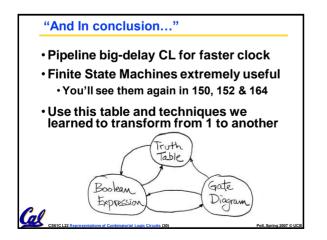

N-input XOR is the	a	b	c	y
only one which isn't so obvious	0	0	0	0
It's simple: XOR is a 1 iff the # of 1s at its	0	0	1	1
1 iff the # of 1s at its input is odd ⇒	0	1	0	1
-	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	1








$\frac{xy + x = x}{\overline{x \cdot y} = \overline{x} + \overline{y}} \qquad \qquad \frac{(x + y)x = x}{(x + y) = \overline{x} \cdot \overline{y}} \qquad \qquad \text{DeMorgan's}$
--


	Boolean Algebraic	Simplification Example
y	= ab + a + c = a(b+1) + c = a(1) + c = a + c	distribution, identity law of 1's identity
Ga	CSHICL22 Representations of Combinatorial Logic Circu	jits (24) Poll, Spring 2007 € UCI

A. $(a+b) \cdot (\overline{a}+b) = b$ B. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT $abc \land d \land e) = a \land (bc \land (d \land e))$ $abc \land d \land e) = a \land (bc \land (d \land e))$ $bc \land (d \land e) = a \land (bc \land (d \land e))$ $bc \land (d \land e) = (bc \land (d \land e))$ $bc \land (d \land e) = (bc \land (d \land e))$ $bc \land (d \land e) = (bc \land (d \land e))$ $bc \land (d \land e) = (bc \land (d \land e))$ $bc \land (d \land e) = (bc \land (d$		Peer Instruction		
A. $(d \cdot b)^{-}(d \cdot b) = b^{-}$ 1: FFFB. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFTC. You can use NOR(s) with clever wiring7: TTF				
A. $(d \cdot b)^{-}(d \cdot b) = b^{-}$ 1: FFFB. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFTC. You can use NOR(s) with clever wiring7: TTF				
A. $(a \cdot b)^{-}(a \cdot b) = b$ 1: FFFB. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFTC. You can use NOR(s) with clever wiring7: TTF				
A. $(a \cdot b)^{-}(a \cdot b) = b$ 1: FFFB. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFTC. You can use NOR(s) with clever wiring7: TTF				
B. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where \land is one of AND, OR, XOR, NAND C. You can use NOR(s) with clever wiring2: FFT 3: FTF 4: FTT 5: TFF 6: TFT	Α.	(a+b)• (ā+b) = b		
cascaded 2-input gates. I.e., (a \triangle bc \triangle d \triangle e) = a \triangle (bc \triangle (d \triangle e))3: FTF 4: FTT 5: TFT 6: TFTwhere \triangle is one of AND, OR, XOR, NAND C. You can use NOR(s) with clever wiring7: TTF 7: TTF	в.	N-input gates can be thought of		1
(a Δ b C Δ d Δ e) - a Δ (b C Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND 5: TFF 6: TFT C. You can use NOR(s) with clever wiring 7: TTF	-		3:	
C. You can use NOR(s) with clever wiring			· • •	
C. You can use NOR(s) with clever wiring		where Δ is one of AND, OR, XOR, NAND		
	С	You can use NOR(s) with clever wiring		
	.	to simulate AND, OR, & NOT	8:	TTT

