Lecture 22 Representations of Combinatorial Logic Circuits

2007-3-9

TA David "The Punner" Eitan Poll

www . depoll.com

Highly Illogical \Rightarrow

I don't have any news for you today, but thought that a Spock reference was pertinent given the topic of this lecture!

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1's in the input.

OUTPUT

Draw the FSM... $\%$

Assume state transitions are controlled by the clock: on each clock cycle the machine checks the inputs and moves to a new state and produces a new output...

Hardware Implementation of FSM
... Therefore a register is needed to hold the a representation of which state the machine is in. Use a unique bit pattern for each state.

Hardware for FSM: Combinational Logic

This lecture we will discuss the detailed implementation, but for now can look at its functional specification, truth table form.

Truth table...

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

General Model for Synchronous Systems

- Collection of CL blocks separated by registers.
- Registers may be back-to-back and CL blocks may be back-toback.
- Feedback is optional.
- Clock signal(s) connects only to clock input of registers.

Review

- State elements are used to:
- Build memories
- Control the flow of information between other state elements and combinational logic
- D-flip-flops used to build registers
- Clocks tell us when D-flip-flops change
- Setup and Hold times important
- We pipeline long-delay CL for faster clock
- Finite State Machines extremely useful
- Represent states and transitions

Combinational Logic

- FSMs had states and transitions
- How to we get from one state to the next?
- Answer: Combinational Logic

Truth Tables

TT Example \#1: 1 iff one (not both) $a, b=1$

TT Example \#2: 2-bit adder

$A B$	$\begin{gathered} \text { A } \\ a_{1} a_{0} \end{gathered}$	$\begin{gathered} \text { B } \\ b_{1} b_{0} \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & c_{2} c_{1} c_{0} \end{aligned}$	
	00	00	000	
717	00	01	001	
2121	00	10	010	
$1 \quad$	00	11	011	
-	01	00	001	
1	01	01	010	
I	01	10	011	How
1	01	11	100	How
	10	00	010	Many
31	10	01	011	Rows?
31	10	10	100	
	10	11	101	
1	11	00	011	
	11	01	100	
Pa	11	10	101	
C.S C561C L22 Representations of Combinatorial Loo	111	11	110	Poll, Spring 20

TT Example \#3: 32-bit unsigned adder

A	B	C		
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$		
$000 \ldots 0$	$000 \ldots 1$	$000 \ldots 01$		
.	.	.		How
:---:				
.				

TT Example \#3: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

And vs. Or review - Dan's mnemonic

AND Gate

Symbol
A
B

Definition

Logic Gates (2/2)

2-input gates extend to n-inputs

- N -input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1s at its input is odd \Rightarrow

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table \Rightarrow Gates (e.g., majority circ.)

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth Table \Rightarrow Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic

- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA
C ${ }^{+}$means OR,• means AND, \bar{x} means NOT

Boolean Algebra (e.g., for majority fun.)

$$
\begin{gathered}
y=a \cdot b+a \cdot c+b \cdot c \\
y=a b+a c+b c
\end{gathered}
$$

Boolean Algebra (e.g., for FSM)

$\mathrm{y}=\mathrm{PS}_{1} \cdot \mathrm{PS}_{0} \cdot \mathrm{INPUT}$

BA: Circuit \& Algebraic Simplification

Laws of Boolean Algebra

$$
\begin{gathered}
x \cdot \bar{x}=0 \\
x \cdot 0=0 \\
x \cdot 1=x \\
x \cdot x=x \\
x \cdot y=y \cdot x \\
(x y) z=x(y z) \\
x(y+z)=x y+x z \\
x y+x=x \\
\overline{x \cdot y}=\bar{x}+\bar{y}
\end{gathered}
$$

complementarity laws of 0's and 1's identities
idempotent law
commutativity
associativity
distribution
uniting theorem
DeMorgan's Law

Boolean Algebraic Simplification Example

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of 1's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical forms (1/2)

Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$

Peer Instruction

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N -input gates can be thought of cascaded 2 -input gates. I.e., $(\mathbf{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathbf{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

Peer Instruction Answer (B)

B. N-input gates can be thought of cascaded 2-input gates. l.e.,
$(\mathbf{a} \Delta \mathrm{bc} \Delta \mathbf{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND...FALSE

Let's confirm!

		CT		
XYZ	AND	10	XOR	NA
0001	0	10	0	
0011	0	11	1	
0101	0	11	1	
011\|	0	11	0	
1001	0		1	
101\|	-			
1101	0			
11	1		1	

	CORRECT 2-input YZ\|AND	OR	XOR	NAND		XOR\|NAND			
001				0					
01\|	0	11		1					
101		\|1		1					
11\|									

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164
- Use this table and techniques we learned to transform from 1 to another

