inst.eecs.berkeley.edu/~cs61c

UC Berkeley CS61C: Machine Structures

Lecture 23 – Combinational Logic Blocks

2007-03-12

RIP Richard Jeni 1957-2007

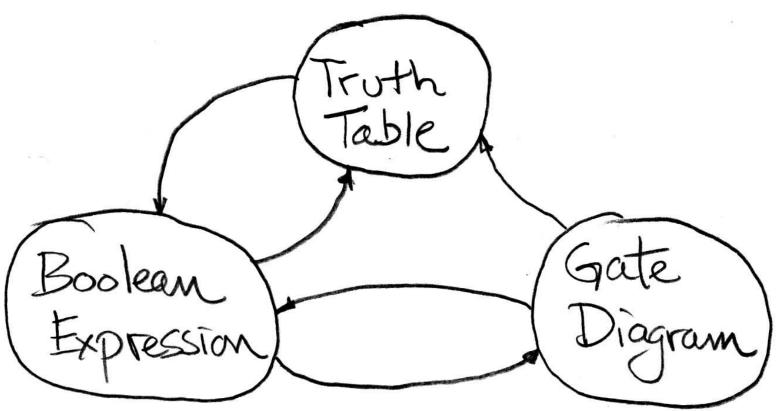
www.cs.berkeley.edu/~ddgarcia

Salamander robot! ⇒
Swiss scientists have

built a robot that can both swim and walk. A yard long, it has a "nervous system" based on a lamprey eel.

Review

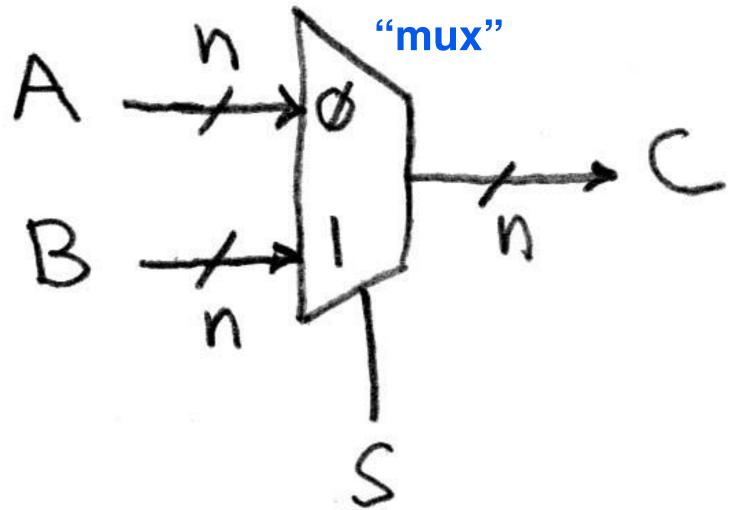
 Use this table and techniques we learned to transform from 1 to another



Today

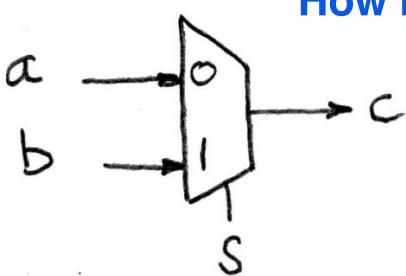
- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)



N instances of 1-bit-wide mux

How many rows in TT?



$$c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$$

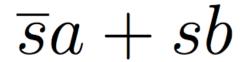
$$= \overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab)$$

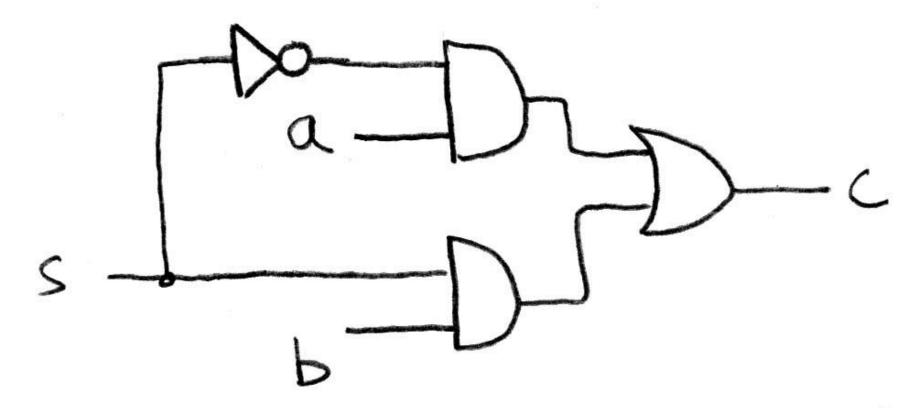
$$= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b)$$

$$= \overline{s}(a(1) + s((1)b))$$

$$= \overline{s}a + sb$$

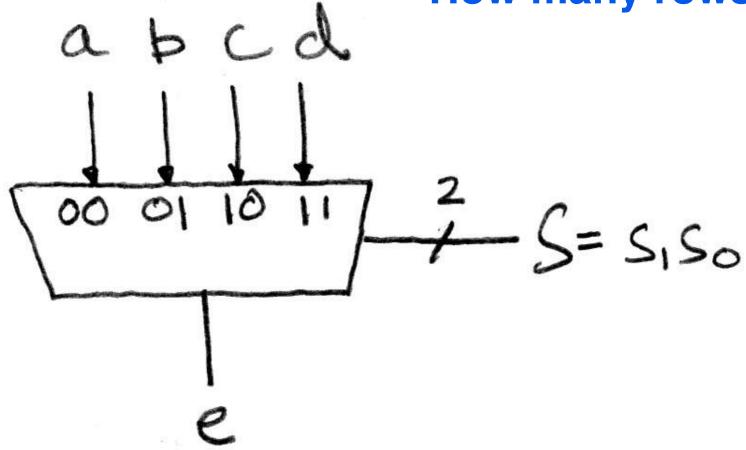
How do we build a 1-bit-wide mux?





4-to-1 Multiplexor?

How many rows in TT?



$$e = \overline{s_1}\overline{s_0}a + \overline{s_1}s_0b + s_1\overline{s_0}c + s_1s_0d$$

Is there any other way to do it?

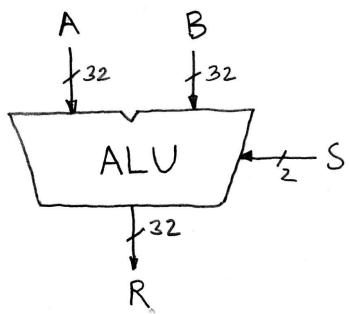


Administrivia

- SIGCSE 2007 in Covington, KY
 - Special Interest Group in Computer
 Science Education conference
 - Great chance to network with like-minded people from around the world!
 - Teaching faculty
 - People interested in Computer Science Education Research
 - SIGCSE 2008 is in Portland, OR
 - I'm the "Student Volunteer Coordinator"
 - If you want to go, talk to me!

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR



when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU



Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter - One-bit adder LSB...

a_0	b_0	s_0	c_1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

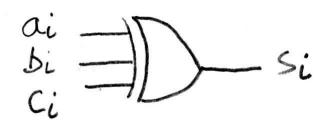
$$s_0 = c_1 = c_1$$

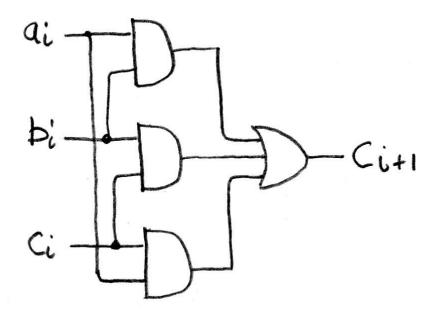
Adder/Subtracter – One-bit adder (1/2)...

a_i	b_i	c_i	$ s_i $	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s_i = c_{i+1} =$$

Adder/Subtracter - One-bit adder (2/2)...

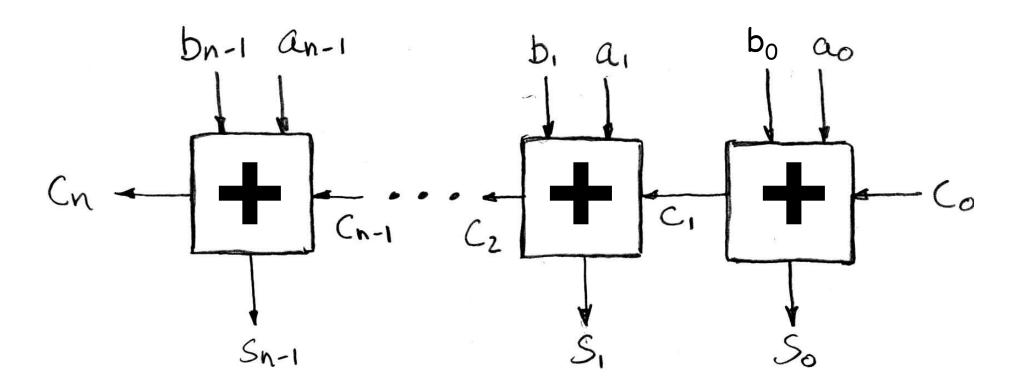




$$s_i = XOR(a_i, b_i, c_i)$$

 $c_{i+1} = MAJ(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$

N 1-bit adders ⇒ 1 N-bit adder



What about overflow? Overflow = c_n ?

What about overflow?

Consider a 2-bit signed # & overflow:

- \cdot C₁ = Carry-in = C_{in}, C₂ = Carry-out = C_{out}
- No C_{out} or $C_{in} \Rightarrow NO$ overflow!

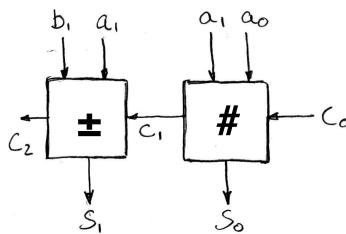
What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!

- C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow!
- $\cdot C_{out}$, but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

What about overflow?

Consider a 2-bit signed # & overflow:

$$10 = -2$$
 $11 = -1$
 $00 = 0$
 $01 = 1$

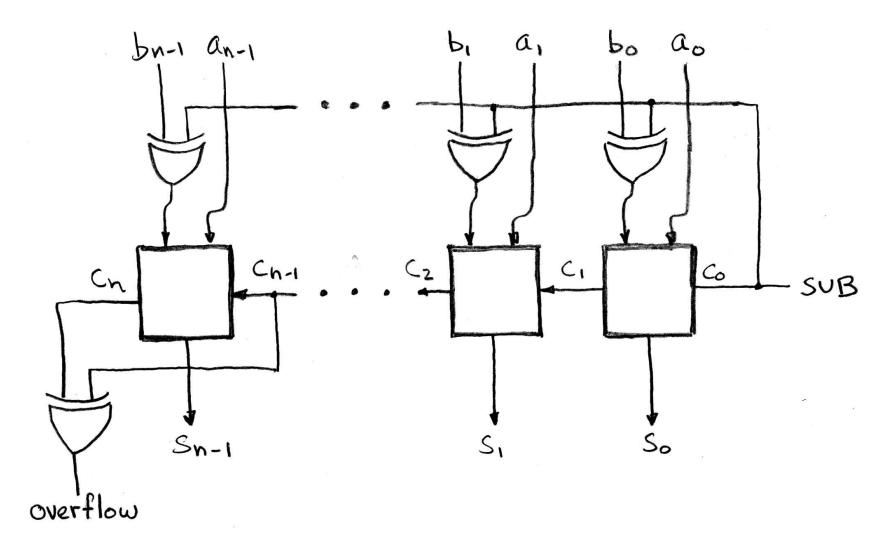


- Overflows when...

 - C_{in}, but no C_{out} ⇒ A,B both > 0, overflow!
 C_{out}, but no C_{in} ⇒ A,B both < 0, overflow!

overflow = c_n XOR c_{n-1}

Extremely Clever Subtractor



Peer Instruction

- A. Truth table for mux with 4-bits of signals has 2⁴ rows
- B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl
- C. If 1-bit adder delay is T, the N-bit adder delay would also be T

ABC

): FFF

1: FFT

2: **FTF**

3: **FTT**

4: **TFF**

5: **TF**T

6: TTF

7: TTT

CS61C L23 Combinational Logic Blocks (20)

Garcia, Spring 2007 © UCB

Peer Instruction Answer

"And In conclusion..."

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

