
CS61C L24 Introduction to CPU Design (1) Garcia, Spring 2007 © UCB

Cell pic to web site !
A new MS app lets people

search the web based on a
digital cell phone photo (of
poster, ad, dvd, magazine,

painting, product). Cool!

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c

UC Berkeley CS61C : Machine Structures

 Lecture 24 – Introduction to CPU Design

 2007-03-14

lincoln.msresearch.us

CS61C L24 Introduction to CPU Design (2) Garcia, Spring 2007 © UCB

What about overflow?

•Consider a 2-bit signed # & overflow:

10 = -2 + -2 or -1
11 = -1 + -2 only
00 = 0 NOTHING!
01 = 1 + 1 only

•Overflows when…

• Cin, but no Cout ! A,B both > 0, overflow!

• Cout, but no Cin ! A,B both < 0, overflow!

± #

CS61C L24 Introduction to CPU Design (3) Garcia, Spring 2007 © UCB

Extremely Clever Signed Adder/Subtractor

x y xor

Conditional Inverter

A - B = A + (-B); how do we make “-B”?

CS61C L24 Introduction to CPU Design (4) Garcia, Spring 2007 © UCB

Five Components of a Computer

 Processor

Computer

Control

Datapath

Memory
(passive)

(where
programs,
data live
when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,

Printer

Disk
(where
programs,
data live
when not
running)

CS61C L24 Introduction to CPU Design (5) Garcia, Spring 2007 © UCB

The CPU

•Processor (CPU): the active part of the
computer, which does all the work (data
manipulation and decision-making)

•Datapath: portion of the processor
which contains hardware necessary to
perform operations required by the
processor (the brawn)

•Control: portion of the processor (also
in hardware) which tells the datapath
what needs to be done (the brain)

CS61C L24 Introduction to CPU Design (6) Garcia, Spring 2007 © UCB

Stages of the Datapath : Overview

•Problem: a single, atomic block which
“executes an instruction” (performs
all necessary operations beginning
with fetching the instruction) would be
too bulky and inefficient

•Solution: break up the process of
“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

• smaller stages are easier to design

• easy to optimize (change) one stage
without touching the others

CS61C L24 Introduction to CPU Design (7) Garcia, Spring 2007 © UCB

Stages of the Datapath (1/5)

•There is a wide variety of MIPS
instructions: so what general steps do
they have in common?

•Stage 1: Instruction Fetch

• no matter what the instruction, the 32-bit
instruction word must first be fetched
from memory (the cache-memory
hierarchy)

• also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

CS61C L24 Introduction to CPU Design (8) Garcia, Spring 2007 © UCB

Stages of the Datapath (2/5)

•Stage 2: Instruction Decode

• upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)

• first, read the Opcode to determine
instruction type and field lengths

• second, read in data from all necessary
registers

! for add, read two registers

! for addi, read one register

! for jal, no reads necessary

CS61C L24 Introduction to CPU Design (9) Garcia, Spring 2007 © UCB

Stages of the Datapath (3/5)

•Stage 3: ALU (Arithmetic-Logic Unit)

• the real work of most instructions is
done here: arithmetic (+, -, *, /), shifting,
logic (&, |), comparisons (slt)

• what about loads and stores?

! lw $t0, 40($t1)

! the address we are accessing in memory =
the value in $t1 PLUS the value 40

! so we do this addition in this stage

CS61C L24 Introduction to CPU Design (10) Garcia, Spring 2007 © UCB

Stages of the Datapath (4/5)

•Stage 4: Memory Access

• actually only the load and store
instructions do anything during this
stage; the others remain idle during this
stage or skip it all together

• since these instructions have a unique
step, we need this extra stage to account
for them

• as a result of the cache system, this
stage is expected to be fast

CS61C L24 Introduction to CPU Design (11) Garcia, Spring 2007 © UCB

Stages of the Datapath (5/5)

•Stage 5: Register Write

• most instructions write the result of some
computation into a register

• examples: arithmetic, logical, shifts,
loads, slt

• what about stores, branches, jumps?

! don!t write anything into a register at the end

! these remain idle during this fifth stage or
skip it all together

CS61C L24 Introduction to CPU Design (12) Garcia, Spring 2007 © UCB

Generic Steps of Datapath

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

rt
rs

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Reg.
 Write

CS61C L24 Introduction to CPU Design (13) Garcia, Spring 2007 © UCB

Administrivia

•Dan!s office hours for the next two
weeks moved to Friday @ 3pm

•Homework 5 due tonight

•Midterm

• Grading standards up soon

• If you wish to have a problem regraded

! Staple your reasons to the front of the exam

! Return your exam to your TA

CS61C L24 Introduction to CPU Design (14) Garcia, Spring 2007 © UCB

Datapath Walkthroughs (1/3)

•add $r3,$r1,$r2 # r3 = r1+r2

• Stage 1: fetch this instruction, inc. PC

• Stage 2: decode to find it!s an add, then
read registers $r1 and $r2

• Stage 3: add the two values retrieved in
Stage 2

• Stage 4: idle (nothing to write to memory)

• Stage 5: write result of Stage 3 into
register $r3

CS61C L24 Introduction to CPU Design (15) Garcia, Spring 2007 © UCB

Example: add Instruction

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

2

1

3

a
d
d
 r

3
,
r1

,
r2

reg[1]+reg[2]

reg[2]

reg[1]

CS61C L24 Introduction to CPU Design (16) Garcia, Spring 2007 © UCB

Datapath Walkthroughs (2/3)

•slti $r3,$r1,17

• Stage 1: fetch this instruction, inc. PC

• Stage 2: decode to find it!s an slti, then
read register $r1

• Stage 3: compare value retrieved in Stage
2 with the integer 17

• Stage 4: idle

• Stage 5: write the result of Stage 3 in
register $r3

CS61C L24 Introduction to CPU Design (17) Garcia, Spring 2007 © UCB

Example: slti Instruction

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

3

1

x

s
lt
i
r3

,
r1

,
1
7

reg[1]<17?

17

reg[1]

CS61C L24 Introduction to CPU Design (18) Garcia, Spring 2007 © UCB

Datapath Walkthroughs (3/3)

•sw $r3, 17($r1)

• Stage 1: fetch this instruction, inc. PC

• Stage 2: decode to find it!s a sw, then
read registers $r1 and $r3

• Stage 3: add 17 to value in register $41
(retrieved in Stage 2)

• Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3

• Stage 5: idle (nothing to write into a
register)

CS61C L24 Introduction to CPU Design (19) Garcia, Spring 2007 © UCB

Example: sw Instruction

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

3

1

x

S
W

 r
3
,
1
7
(r

1
)

reg[1]+17

17

reg[1]

M
E

M
[r

1
+

1
7
]<

=
r3

reg[3]

CS61C L24 Introduction to CPU Design (20) Garcia, Spring 2007 © UCB

Why Five Stages? (1/2)

•Could we have a different number of
stages?

• Yes, and other architectures do

•So why does MIPS have five if
instructions tend to idle for at least
one stage?

• The five stages are the union of all the
operations needed by all the instructions.

• There is one instruction that uses all five
stages: the load

CS61C L24 Introduction to CPU Design (21) Garcia, Spring 2007 © UCB

Why Five Stages? (2/2)

•lw $r3, 17($r1)

• Stage 1: fetch this instruction, inc. PC

• Stage 2: decode to find it!s a lw, then
read register $r1

• Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

• Stage 4: read value from memory
address compute in Stage 3

• Stage 5: write value found in Stage 4 into
register $r3

CS61C L24 Introduction to CPU Design (22) Garcia, Spring 2007 © UCB

Example: lw Instruction

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

3

1

x

L
W

 r
3
,
1
7
(r

1
)

reg[1]+17

17

reg[1]

M
E

M
[r

1
+

1
7
]

CS61C L24 Introduction to CPU Design (23) Garcia, Spring 2007 © UCB

Datapath Summary

•The datapath based on data transfers
required to perform instructions

•A controller causes the right transfers
to happen

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

rt
rs

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

Controller

opcode, funct

CS61C L24 Introduction to CPU Design (24) Garcia, Spring 2007 © UCB

What Hardware Is Needed? (1/2)

•PC: a register which keeps track of
memory addr of the next instruction

•General Purpose Registers

• used in Stages 2 (Read) and 5 (Write)

• MIPS has 32 of these

•Memory

• used in Stages 1 (Fetch) and 4 (R/W)

• cache system makes these two stages as
fast as the others, on average

CS61C L24 Introduction to CPU Design (25) Garcia, Spring 2007 © UCB

What Hardware Is Needed? (2/2)

•ALU
• used in Stage 3

• something that performs all necessary
functions: arithmetic, logicals, etc.

• we!ll design details later

•Miscellaneous Registers
• In implementations with only one stage
per clock cycle, registers are inserted
between stages to hold intermediate data
and control signals as they travels from
stage to stage.

• Note: Register is a general purpose term
meaning something that stores bits. Not
all registers are in the “register file”.

CS61C L24 Introduction to CPU Design (26) Garcia, Spring 2007 © UCB

CPU clocking (1/2)

• Single Cycle CPU: All stages of an
instruction are completed within one long
clock cycle.

• The clock cycle is made sufficient long to allow
each instruction to complete all stages without
interruption and within one cycle.

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Reg.
 Write

CS61C L24 Introduction to CPU Design (27) Garcia, Spring 2007 © UCB

CPU clocking (2/2)

•Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

• The clock is made as long as the slowest stage.

Several significant advantages over single cycle
execution: Unused stages in a particular
instruction can be skipped OR instructions can
be pipelined (overlapped).

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Reg.
 Write

CS61C L24 Introduction to CPU Design (28) Garcia, Spring 2007 © UCB

Peer Instruction

A. If the destination reg is the same
as the source reg, we could
compute the incorrect value!

B. We!re going to be able to read 2
registers and write a 3rd in 1 cycle

C. Datapath is hard, Control is easy

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L24 Introduction to CPU Design (29) Garcia, Spring 2007 © UCB

Peer Instruction

A. Truth table for mux with 4-bits of
signals has 24 rows

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L24 Introduction to CPU Design (30) Garcia, Spring 2007 © UCB

Peer Instruction Answer

A. Truth table for mux with 4-bits of
signals is 24 rows long

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

A. Truth table for mux with 4-bits of signals
controls 16 inputs, for a total of 20 inputs,
so truth table is 220 rows…FALSE

B. We could cascade N 1-bit shifters to
make 1 N-bit shifter for sll, srl … TRUE

C. What about the cascading carry? FALSE

CS61C L24 Introduction to CPU Design (31) Garcia, Spring 2007 © UCB

“And In conclusion…”

•N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

• XOR serves as conditional inverter

•CPU design involves Datapath,Control

• Datapath in MIPS involves 5 CPU stages

1) Instruction Fetch

2) Instruction Decode & Register Read

3) ALU (Execute)

4) Memory

5) Register Write

