
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Spring 2007 © UCB

Google Summer of Code !

Student applications are

now open (through 2007-03-24); 131

projects available. Work on wxPython,

PHP, BZFlag, LispNYC, GNU, & more!

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 25
 CPU Design: Designing a Single-cycle CPU

 2007-03-16

code.google.com/soc

UC Regents approve 7%

student fee increase!

CS61C L25 CPU Design : Designing a Single-Cycle CPU (2) Garcia, Spring 2007 © UCB

Review

• N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

• XOR serves as conditional inverter

• CPU design involves Datapath,Control

• Datapath in MIPS involves 5 CPU stages

1) Instruction Fetch

2) Instruction Decode & Register Read

3) ALU (Execute)

4) Memory

5) Register Write

CS61C L25 CPU Design : Designing a Single-Cycle CPU (3) Garcia, Spring 2007 © UCB

Datapath Summary

• The datapath based on data transfers
required to perform instructions

• A controller causes the right transfers
to happen

P
C

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

rt
rs

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

Controller

opcode, funct

CS61C L25 CPU Design : Designing a Single-Cycle CPU (4) Garcia, Spring 2007 © UCB

CPU clocking (1/2)

• Single Cycle CPU: All stages of an
instruction are completed within one long
clock cycle.

• The clock cycle is made sufficient long to allow
each instruction to complete all stages without
interruption and within one cycle.

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Reg.
 Write

CS61C L25 CPU Design : Designing a Single-Cycle CPU (5) Garcia, Spring 2007 © UCB

CPU clocking (2/2)

• Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

• The clock is made as long as the slowest stage.

Several significant advantages over single cycle
execution: Unused stages in a particular
instruction can be skipped OR instructions can
be pipelined (overlapped).

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Reg.
 Write

CS61C L25 CPU Design : Designing a Single-Cycle CPU (6) Garcia, Spring 2007 © UCB

How to Design a Processor: step-by-step

1. Analyze instruction set architecture (ISA)
! datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer

2. Select set of datapath components and
establish clocking methodology

3. Assemble datapath meeting requirements

4. Analyze implementation of each instruction
to determine setting of control points that
effects the register transfer.

5. Assemble the control logic

CS61C L25 CPU Design : Designing a Single-Cycle CPU (7) Garcia, Spring 2007 © UCB

Review: The MIPS Instruction Formats
• All MIPS instructions are 32 bits long. 3 formats:

• R-type

• I-type

• J-type

• The different fields are:
• op: operation (“opcode”) of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount

• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value

• target address: target address of jump instruction

op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate

016212631

6 bits 16 bits5 bits5 bits

CS61C L25 CPU Design : Designing a Single-Cycle CPU (8) Garcia, Spring 2007 © UCB

Step 1a: The MIPS-lite Subset for today

• ADDU and SUBU

•addu rd,rs,rt

•subu rd,rs,rt

• OR Immediate:

•ori rt,rs,imm16

• LOAD and
STORE Word

•lw rt,rs,imm16

•sw rt,rs,imm16

• BRANCH:

•beq rs,rt,imm16

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

CS61C L25 CPU Design : Designing a Single-Cycle CPU (9) Garcia, Spring 2007 © UCB

Register Transfer Language

• RTL gives the meaning of the instructions

• All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} " MEM[PC]

{op , rs , rt , Imm16} " MEM[PC]

inst Register Transfers

ADDU R[rd] " R[rs] + R[rt]; PC " PC + 4

SUBU R[rd] " R[rs] – R[rt]; PC " PC + 4

ORI R[rt] " R[rs] | zero_ext(Imm16); PC " PC + 4

LOAD R[rt] " MEM[R[rs] + sign_ext(Imm16)]; PC " PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] " R[rt]; PC " PC + 4

BEQ if (R[rs] == R[rt]) then
 PC " PC + 4 + (sign_ext(Imm16) || 00)
 else PC " PC + 4

CS61C L25 CPU Design : Designing a Single-Cycle CPU (10) Garcia, Spring 2007 © UCB

Step 1: Requirements of the Instruction Set

• Memory (MEM)

• instructions & data (will use one for each)

• Registers (R: 32 x 32)

• read RS

• read RT

• Write RT or RD

• PC

• Extender (sign/zero extend)

• Add/Sub/OR unit for operation on
register(s) or extended immediate

• Add 4 or extended immediate to PC

• Compare registers?

CS61C L25 CPU Design : Designing a Single-Cycle CPU (11) Garcia, Spring 2007 © UCB

Step 2: Components of the Datapath

•Combinational Elements

•Storage Elements
• Clocking methodology

CS61C L25 CPU Design : Designing a Single-Cycle CPU (12) Garcia, Spring 2007 © UCB

Combinational Logic Elements (Building Blocks)

•Adder

•MUX

•ALU

32

32

A

B

32
Sum

CarryOut

32

32

A

B

32
Result

OP

32
A

B
32

Y
32

Select

A
d

d
er

M
U

X
A

L
U

CarryIn

CS61C L25 CPU Design : Designing a Single-Cycle CPU (13) Garcia, Spring 2007 © UCB

ALU Needs for MIPS-lite + Rest of MIPS

• Addition, subtraction, logical OR, ==:

ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] – R[rt]; ...

ORI R[rt] = R[rs] | zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])...

• Test to see if output == 0 for any ALU
operation gives == test. How?

• P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

• ALU follows chap 5

CS61C L25 CPU Design : Designing a Single-Cycle CPU (14) Garcia, Spring 2007 © UCB

Administrivia

• Read the book! Important to
understand lecture and for project.

• P&H 5.1-5.4

CS61C L25 CPU Design : Designing a Single-Cycle CPU (15) Garcia, Spring 2007 © UCB

What Hardware Is Needed? (1/2)

• PC: a register which keeps track of
memory addr of the next instruction

• General Purpose Registers

• used in Stages 2 (Read) and 5 (Write)

• MIPS has 32 of these

• Memory

• used in Stages 1 (Fetch) and 4 (R/W)

• cache system makes these two stages as
fast as the others, on average

CS61C L25 CPU Design : Designing a Single-Cycle CPU (16) Garcia, Spring 2007 © UCB

What Hardware Is Needed? (2/2)

• ALU

• used in Stage 3

• something that performs all necessary
functions: arithmetic, logicals, etc.

• we!ll design details later

• Miscellaneous Registers

• In implementations with only one stage
per clock cycle, registers are inserted
between stages to hold intermediate data
and control signals as they travels from
stage to stage.

• Note: Register is a general purpose term
meaning something that stores bits. Not
all registers are in the “register file”.

CS61C L25 CPU Design : Designing a Single-Cycle CPU (17) Garcia, Spring 2007 © UCB

Storage Element: Idealized Memory

• Memory (idealized)
• One input bus: Data In

• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out

• Write Enable = 1: address selects the memory
word to be written via the Data In bus

• Clock input (CLK)
• The CLK input is a factor ONLY during write

operation

• During read operation, behaves as a
combinational logic block:

! Address valid ! Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32

DataOut

Address

CS61C L25 CPU Design : Designing a Single-Cycle CPU (18) Garcia, Spring 2007 © UCB

Storage Element: Register (Building Block)

• Similar to D Flip Flop except

! N-bit input and output

! Write Enable input

• Write Enable:

! negated (or deasserted) (0):
Data Out will not change

! asserted (1):
Data Out will become Data In on positive
edge of clock

clk

Data In

Write Enable

N N

Data Out

CS61C L25 CPU Design : Designing a Single-Cycle CPU (19) Garcia, Spring 2007 © UCB

Storage Element: Register File

• Register File consists of 32 registers:
• Two 32-bit output busses:

 busA and busB

• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)

• RB (number) selects the register to put on busB (data)

• RW (number) selects the register to be written
via busW (data) when Write Enable is 1

• Clock input (clk)
• The clk input is a factor ONLY during write operation

• During read operation, behaves as a combinational
logic block:

! RA or RB valid ! busA or busB valid after “access time.”

Clk

busW

Write Enable

32

32

busA

32

busB

5 5 5

RWRA RB

32 32-bit

Registers

CS61C L25 CPU Design : Designing a Single-Cycle CPU (20) Garcia, Spring 2007 © UCB

Step 3: Assemble DataPath meeting requirements

• Register Transfer Requirements
! Datapath Assembly

• Instruction Fetch

• Read Operands and Execute Operation

CS61C L25 CPU Design : Designing a Single-Cycle CPU (21) Garcia, Spring 2007 © UCB

3a: Overview of the Instruction Fetch Unit

• The common RTL operations

• Fetch the Instruction: mem[PC]

• Update the program counter:
! Sequential Code: PC " PC + 4

! Branch and Jump: PC " “something else”

32

Instruction WordAddress

Instruction

Memory

PCclk

Next Address

Logic

CS61C L25 CPU Design : Designing a Single-Cycle CPU (22) Garcia, Spring 2007 © UCB

3b: Add & Subtract

• R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt

• Ra, Rb, and Rw come from instruction!s Rs, Rt,
and Rd fields

• ALUctr and RegWr: control logic after decoding
the instruction

32

Result

ALUctr

clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit

Registers

Rs RtRd

A
L

U

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

Already defined the register file & ALU

CS61C L25 CPU Design : Designing a Single-Cycle CPU (23) Garcia, Spring 2007 © UCB

Peer Instruction

A. Our ALU is a synchronous device

B. We should use the main ALU to
compute PC=PC+4

C. The ALU is inactive for memory
reads or writes.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L25 CPU Design : Designing a Single-Cycle CPU (24) Garcia, Spring 2007 © UCB

Peer Instruction

A. If the destination reg is the same
as the source reg, we could
compute the incorrect value!

B. We!re going to be able to read 2
registers and write a 3rd in 1 cycle

C. Datapath is hard, Control is easy

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L25 CPU Design : Designing a Single-Cycle CPU (25) Garcia, Spring 2007 © UCB

Peer Instruction

A. Truth table for mux with 4-bits of
signals has 24 rows

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L25 CPU Design : Designing a Single-Cycle CPU (26) Garcia, Spring 2007 © UCB

Peer Instruction Answer

A. Truth table for mux with 4-bits of
signals is 24 rows long

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

A. Truth table for mux with 4-bits of signals
controls 16 inputs, for a total of 20 inputs,
so truth table is 220 rows…FALSE

B. We could cascade N 1-bit shifters to
make 1 N-bit shifter for sll, srl … TRUE

C. What about the cascading carry? FALSE

CS61C L25 CPU Design : Designing a Single-Cycle CPU (27) Garcia, Spring 2007 © UCB

How to Design a Processor: step-by-step

• 1. Analyze instruction set architecture (ISA)
! datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer

• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements

• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

• 5. Assemble the control logic (hard part!)

