inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C: Machine Structures

Lecture 29
CPU Design: Pipelining to Improve Performance

2007-04-02

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Wirelessly recharge batt ⇒ Powercast & Philips have

developed a wireless power system. Pacemakers & defibrillators req surgery to replace dead batteries... not any more!

Review: Single cycle datapath

°5 steps to design a processor

- 1. Analyze instruction set ⇒ datapath <u>requirements</u>
- 2. <u>Select</u> set of datapath components & establish clock methodology

Control

Datapath

- 3. Assemble datapath meeting the requirements
- 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer.
- 5. Assemble the control logic
- °Control is the hard part
- °MIPS makes that easier
 - Instructions same size
 - Source registers always in same place
 - Immediates same size, location

Operations always on registers/immediates

Input

Output

Memory

How We Build The Controller

opcode func

"AND" logic

ladd

sub

ori

llw

SW

beq

<u>jump</u>

```
RegDst = add + sub
```

ALUSrc = ori + lw + sw

MemtoReg = lw

RegWrite = add + sub + ori + lw

MemWrite = sw

nPCsel = beq

Jump = jump

 $\mathbf{ExtOp} \qquad = \mathbf{lw} + \mathbf{sw}$

ALUctr[0] = sub + beq (assume ALUctr is 0 ADD, 01: SUB, 10: OR)

ALUctr[1] = or

where,

$$\begin{aligned} \text{rtype} &= \sim \text{op}_5 \bullet \sim \text{op}_4 \bullet \sim \text{op}_3 \bullet \sim \text{op}_2 \bullet \sim \text{op}_1 \bullet \sim \text{op}_0, \\ \text{ori} &= \sim \text{op}_5 \bullet \sim \text{op}_4 \bullet \quad \text{op}_3 \bullet \quad \text{op}_2 \bullet \quad \sim \text{op}_1 \bullet \quad \text{op}_0 \\ \text{lw} &= \quad \text{op}_5 \bullet \sim \text{op}_4 \bullet \sim \text{op}_3 \bullet \sim \text{op}_2 \bullet \quad \text{op}_1 \bullet \quad \text{op}_0 \\ \text{sw} &= \quad \text{op}_5 \bullet \sim \text{op}_4 \bullet \quad \text{op}_3 \bullet \sim \text{op}_2 \bullet \quad \text{op}_1 \bullet \quad \text{op}_0 \\ \text{beq} &= \sim \text{op}_5 \bullet \sim \text{op}_4 \bullet \sim \text{op}_3 \bullet \quad \text{op}_2 \bullet \quad \sim \text{op}_1 \bullet \sim \text{op}_0 \\ \text{jump} &= \sim \text{op}_5 \bullet \sim \text{op}_4 \bullet \sim \text{op}_3 \bullet \sim \text{op}_2 \bullet \quad \text{op}_1 \bullet \sim \text{op}_0 \end{aligned}$$

How do we implement this in gates?

"OR" logic

add = rtype • $func_5$ • $\sim func_4$ • $\sim func_3$ • $\sim func_2$ • $\sim func_1$ • $\sim func_0$ sub = $func_5$ • $\sim func_4$ • $\sim func_3$ • $\sim func_2$ • $func_1$ • $\sim func_0$

▶ ReqDst

→ ALUSrc

MemtoReg

RegWrite

MemWrite

nPCsel

→ Jump

► ExtOp

→ ALUctr[0]
→ ALUctr[1]

Processor Performance

- Can we estimate the clock rate (frequency) of our single-cycle processor? We know:
 - 1 cycle per instruction
 - 1w is the most demanding instruction.
 - Assume approximate delays for major pieces of the datapath:
 - Instr. Mem, ALU, Data Mem : 2ns each, regfile 1ns
 - Instruction execution requires: 2 + 1 + 2 + 2 + 1 = 8ns
 - ⇒ 125 MHz
- What can we do to improve clock rate?
- Will this improve performance as well?
 - We want increases in clock rate to result in programs executing quicker.

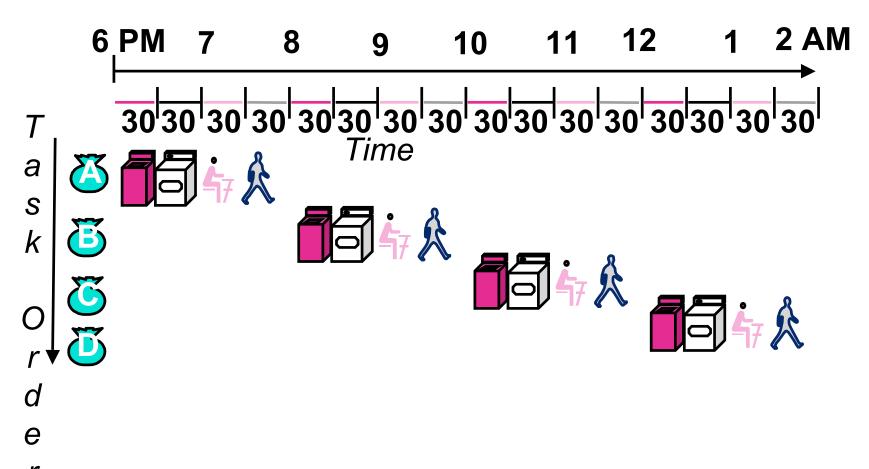
Gotta Do Laundry

Output
Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, fold, and put away

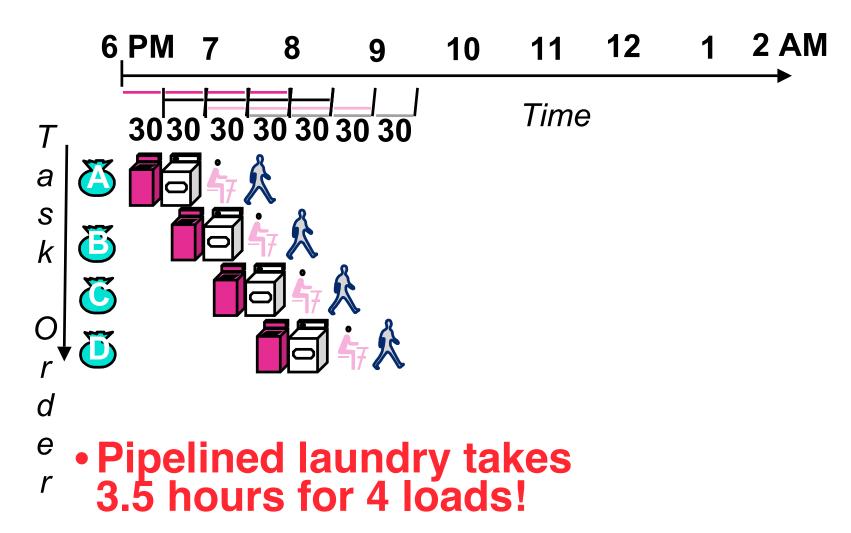
° Washer takes 30 minutes

° Dryer takes 30 minutes

° "Folder" takes 30 minutes

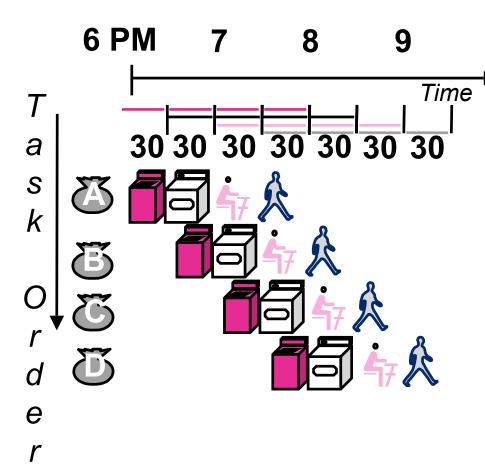


° "Stasher" takes 30 minutes to put clothes into drawers


Sequential Laundry

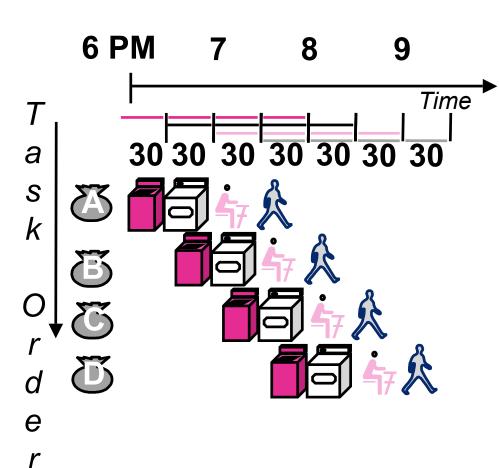
Sequential laundry takes
 8 hours for 4 loads

Pipelined Laundry



General Definitions

- Latency: time to completely execute a certain task
 - for example, time to read a sector from disk is disk access time or disk latency
- Throughput: amount of work that can be done over a period of time


Pipelining Lessons (1/2)

- Pipelining doesn't help latency of single task, it helps throughput of entire workload
- Multiple tasks operating simultaneously using different resources
- Potential speedup = Number pipe stages
- Time to "fill" pipeline and time to "drain" it reduces speedup: 2.3X v. 4X in this example

Pipelining Lessons (2/2)

- Suppose new Washer takes 20 minutes, new Stasher takes 20 minutes. How much faster is pipeline?
- Pipeline rate limited by <u>slowest</u> pipeline stage
- Unbalanced lengths of pipe stages reduces speedup

Steps in Executing MIPS

- 1) IFtch: Instruction Fetch, Increment PC
- 2) Dcd: Instruction Decode, Read Registers
- 3) <u>Exec</u>:

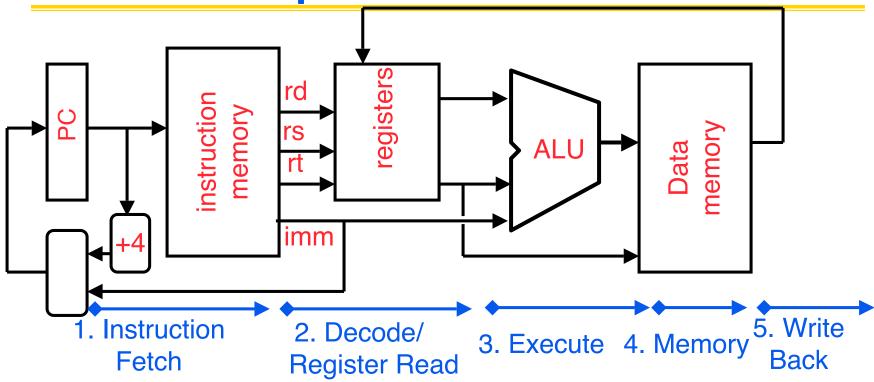
Mem-ref: Calculate Address Arith-log: Perform Operation

4) <u>Mem</u>:

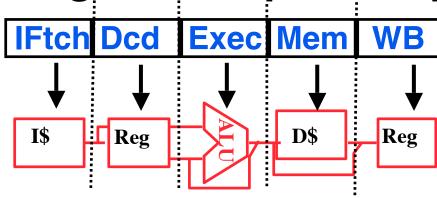
Load: Read Data from Memory

Store: Write Data to Memory

5) WB: Write Data Back to Register


Pipelined Execution Representation

Time


IFtch Dcd Exec Mem WB

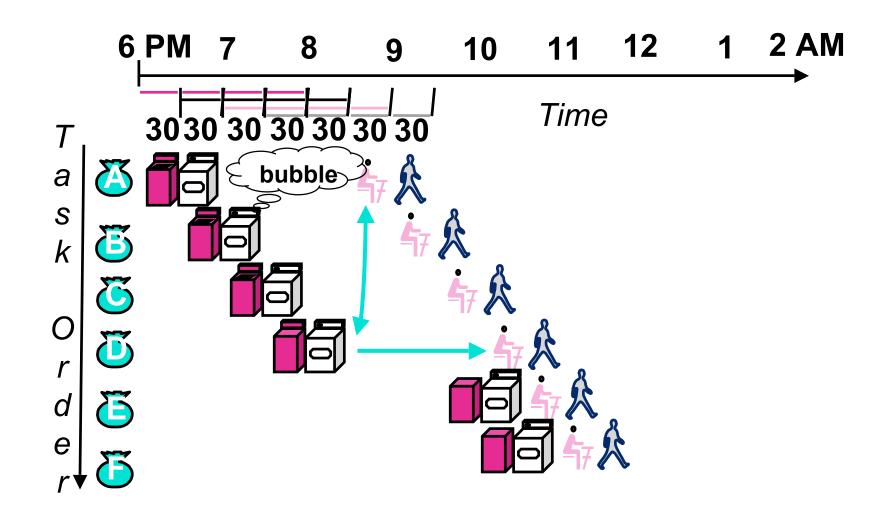
 Every instruction must take same number of steps, also called pipeline "stages", so some will go idle sometimes

Review: Datapath for MIPS

Use datapath figure to represent pipeline

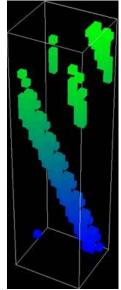
Graphical Pipeline Representation

(In Reg, right half highlight read, left half write)



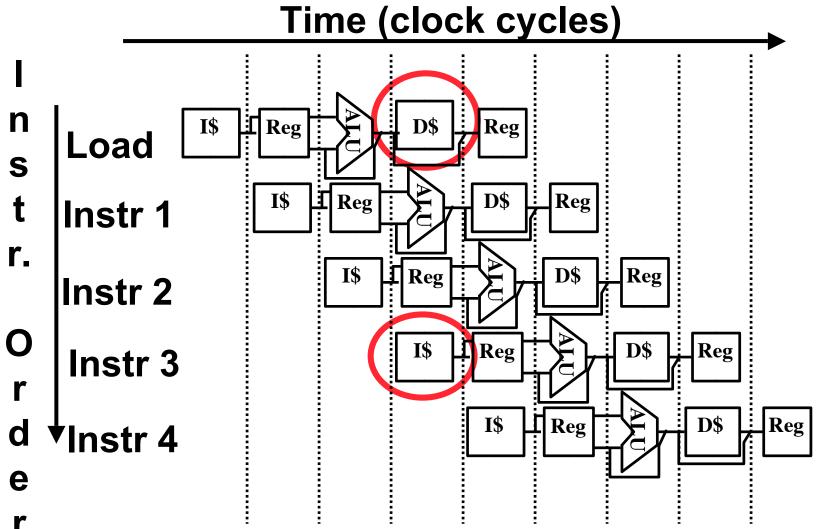
Example

- Suppose 2 ns for memory access, 2 ns for ALU operation, and 1 ns for register file read or write; compute instr rate
- Nonpipelined Execution:
 - •1w: IF + Read Reg + ALU + Memory + Write Reg = 2 + 1 + 2 + 2 + 1 = 8 ns
 - add: IF + Read Reg + ALU + Write Reg
 = 2 + 1 + 2 + 1 = 6 ns
 (recall 8ns for single-cycle processor)
- Pipelined Execution:
 - Max(IF,Read Reg,ALU,Memory,Write Reg)= 2 ns


Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

Administrivia

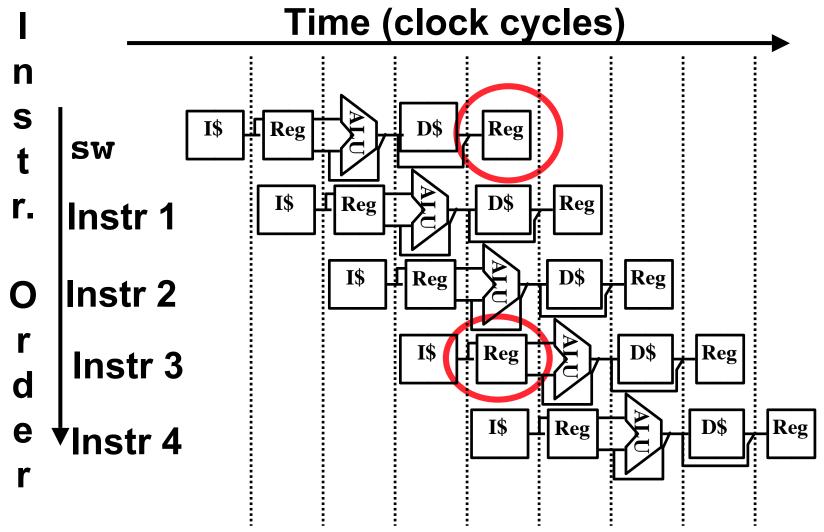

- Want to redo your autograded assignments for more credit?
 - We may have an opportunity for you...
- Performance Competition Up!
 - Rewrite HW2 to be as fast as possible
 - · It'll be run on real MIPS machine (PS2)
 - You can optimize C or MIPS or BOTH!!
 - Do it for pride, fame (& EPA points)
 - Two competitions
 - Traditional (same spec as H2)
 - Unbounded (same H2 Extra for Experts spec)

Problems for Pipelining CPUs

- Limits to pipelining: <u>Hazards</u> prevent next instruction from executing during its designated clock cycle
 - Structural hazards: HW cannot support some combination of instructions (single person to fold and put clothes away)
 - Control hazards: Pipelining of branches causes later instruction fetches to wait for the result of the branch
 - <u>Data hazards</u>: Instruction depends on result of prior instruction still in the pipeline (missing sock)
- These might result in pipeline stalls or "bubbles" in the pipeline.

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle


Structural Hazard #1: Single Memory (2/2)

Solution:

- infeasible and inefficient to create second memory
- (We'll learn about this more next week)
- so simulate this by having two Level 1
 Caches (a temporary smaller [of usually most recently used] copy of memory)
- have both an L1 <u>Instruction Cache</u> and an L1 <u>Data Cache</u>
- need more complex hardware to control when both caches miss

Structural Hazard #2: Registers (1/2)

an we read and write to registers simultaneously?

Structural Hazard #2: Registers (2/2)

- Two different solutions have been used:
 - 1) RegFile access is *VERY* fast: takes less than half the time of ALU stage
 - Write to Registers during first half of each clock cycle
 - Read from Registers during second half of each clock cycle
 - 2) Build RegFile with independent read and write ports
- Result: can perform Read and Write during same clock cycle

Peer Instruction

- A. Thanks to pipelining, I have <u>reduced the time</u> it took me to wash my shirt.
- B. Longer pipelines are <u>always a win</u> (since less work per stage & a faster clock).
- C. We can <u>rely on compilers</u> to help us avoid data hazards by reordering instrs.

- O: FFF
- 1: FFT
- 2: **FTF**
- 3: **FTT**
- 4: **TFF**
- 5: **TFT**
- 6: **TTF**
- 7: TTT

Things to Remember

Optimal Pipeline

- Each stage is executing part of an instruction each clock cycle.
- One instruction finishes during each clock cycle.
- On average, execute far more quickly.
- What makes this work?
 - Similarities between instructions allow us to use same stages for all instructions (generally).
 - Each stage takes about the same amount of time as all others: little wasted time.

