UC Berkeley CS61C : Machine Structures

Lecture 30
CPU Design : Pipelining to Improve Performance Il

2007-04-04

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

E-voting bill in congress! =
Rep Rush Holt (D-NJ) has a

bill before congress (HR 811), which bans e-
voting machines without a paper trail. It also
mandates that the source code be available!
There are still details to be worked out, though.

com/news .azs/p 70401-cong:
GS61C L30 CPU Design : Pipelining to Improve Performance Il (1)

g
Garcia, Spring 2007 © UCB|

Review: Pipeline (2/2)
¢ Pipelining is a BIG IDEA
+ widely used concept

* What makes it less than perfect?

: Conflicts for resources.
Suppose we had only one cache?
=> Need more HW resources

» Control hazards: Branch instructions effect
which instructions come next.
=> Delayed branch

+ Data hazards: Data flow between instructions.

Review: Processor Pipelining (1/2)

« “Pipeline registers” are added to the
datapath/controller to neatly divide the single
cycle processor into “pipeline stages”.

« Optimal Pipeline

- Each stage is executing part of an instruction
each clock cycle.

» One inst. finishes during each clock cycle.
» On average, execute far more quickly.

* What makes this work well?

- Similarities between instructions allow us to use
same stages for all instructions (generally).

» Each stage takes about the same amount of time
2 , as all others: little wasted time.

CSB1C L30 CPU Design : Pipelining to Improve Performance If (2) Garcia, Spring 2007 © UCB|

@ CSB1C L30 CPU Design : Pipelining to Improve Performance II (3)

Garcia, Spring 2007 © UCB|

Control Hazard: Branching (1/8)

Time (clock cycles)

I
" |bea LB
t [Instr1 Rez % Ree
r.
Instr 2 'Reg IE |2 Jr{Ree
? Instr 3 Rez IE' (28 JrRe
@ Ynstr 4 =l By =
r

2 Where do we do the compare for the branch?

CSB1C L30 CPU Design : Pipelining to Improve Performance Il (4) Garcia, Spring 2007 © UCB|

Control Hazard: Branching (2/8)

*We had put branch decision-making
hardware in ALU stage

- therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

« Desired functionality of a branch

- if we do not take the branch, don’t waste
any time and continue executing
normally

« if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CSB1C L30 CPU Design : Pipelining to Improve Performance Il (5) Garcia, Spring 2007 © UCB|

Control Hazard: Branching (3/8)

« Initial Solution: Stall until decision is
made

insert “no-op” instructions (those that
accomplish nothing, just take time) or
hold up the fetch of the next instruction
(for 2 cycles).

- Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

@ CSB1C L30 CPU Design : Pipelining to Improve Performance Il (6)

Garcia, Spring 2007 © UCB|

Control Hazard: Branching (4/8)

« Optimization #1:

« insert special branch comparator in
Stage 2

+as soon as instruction is decoded
(Opcode identifies it as a branch),
immediately make a decision and set the
new value of the PC

+ Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

+ Side Note: This means that branches are
@ idle in Stages 3, 4 and 5.

CSB1C L30 CPU Design : Pipelining to Improve Performance II (7)

Garcia, Spring 2007 © UCB|

Control Hazard: Branching (6a/8)
e User inserting no-op instruction
2 Time (clock cycles) R
¢ |aga I EEI
r. beq H H
O |nop
r
d 1w
e
I «Impact: 2 clock cycles per branch
Qnstructlon = slow
(CS61C L30 CPU Design : Pipelining to Improve Performance Il (9) Garcia, Spring 2007 © UCB|

Control Hazard: Branching (7/8)

< Optimization #2: Redefine branches

« Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

* New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

*The term “Delayed Branch” means
we always execute inst after branch

*This optimization is used on the MIPS

@ CS61C L30 CPU Design : Pipelining to Improve Performance Il (1)

Garcia, Spring 2007 © UCB|

Control Hazard: Branching (5/8)

Time (clock cycles)

beq

Instr 1

ST+~ 3 -

Instr 2

Instr 3

"Instr 4

o aa=0

-

Qaranch comparatort moved to Decode stage.

CSB1C L30 CPU Design : Pipelining to Improve Performance Il (8) Garcia, Spring 2007 © UCB|

Control Hazard: Branching (6b/8)

« Controller inserting a single bubble

S+~ 5 -

-0 a=0

«Impact: 2 clock cycles per branch

nstruction = slow
(CS61C L30 CPU Design : Pipelining to Improve Performance Il (10)

Garcia, Spring 2007 © UCB|

Control Hazard: Branching (8/8)

*Notes on Branch-Delay Slot

» Worst-Case Scenario: can always put a
no-op in the branch-delay slot

+ Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

= re-ordering instructions is a common
method of speeding up programs

= compiler must be very smart in order to find
instructions to do this

= usually can find such an instruction at least
50% of the time

@ = Jumps also have a delay slot...

CSB1C L30 CPU Design : Pipelining to Improve Performance If (12)

Garcia, Spring 2007 © UCB|

Example: Nondelayed vs. Delayed Branch

Delayed Branch
add $1 ,$2,83

Nondelayed Branch

or $8, $9 ,s$10
add $1 ,$2,83 sub $4, $5,5%6
sub $4, $5,%6 beq $1, $4, Exit

beq $1, $4, Exit or $8, $9 ,810

xor $10, $1,$11 xor $10, $1,$11

A A
xit: Exit:

@ CSB1C L30 CPU Design : Pipelining to Improve Performance If (13)

=

Garcia, Spring 2007 © UCB|

Data Hazards (2/2)

Data-flow backward in time are hazards
Time (clock cycles)

I
n IF ID/R X

i add $t0,$t1,8t2] 15 | IE L
r. |sub $t4,5t0,$t3 @

and $t5,50,$t6
or $t7,5t0,$t8

xor $t9,5t0,$t10

@ CSB1C L30 CPU Design : Pipelining to Improve Performance II (15)

Garcia, Spring 2007 © UCB|

Data Hazard: Loads (1/4)

- Dataflow backwards in time are hazards

| IDIRE

IF
Iw $t0,0($t1)[15 R

sub $t3,5t0,$t2

+ Can’t solve all cases with forwarding
+ Must stall instruction dependent on
load, then forward (more hardware)

CSB1C L30 CPU Design : Pipelining to Improve Performance II (17) Garcia, Spring 2007 © UCB|

Data Hazards (1/2)

« Consider the following sequence of
instructions

add $t0, $tl1, $t2
sub $t4, $t0 ,$t3
and $t5, $t0 ,$t6
or $t7, $t0 ,$t8
xor $t9, $t0 ,$tl0

@ CSB1C L30 CPU Design : Pipelining to Improve Performance If (14)

Garcia, Spring 2007 © UCB|

Data Hazard Solution: Forwarding
* Forward result from one stage to another

add $t0,$t1,$t2[15 Ji[Ree]
sub $t4,5t0,$t3
and $t5,5t0,$t6
or $t7,5t0,$t8

xor $t9,5t0,$t10

@ “or” hazard solved by register hardware

CSB1C L30 CPU Design : Pipelining to Improve Performance Ii (16) Garcia, Spring 2007 © UCB|

Data Hazard: Loads (2/4)

+ Hardware stalls pipeline
- Called “interlock”.

IF

Iw $0, 0($t1)

sub $t3,5t0,$t2
and $t5,5t0,5t4

or $t7,5t0,$t6

@ CSB1C L30 CPU Design : Pipelining to Improve Performance Ii (18)

Garcia, Spring 2007 © UCB|

Data Hazard: Loads (3/4)

«Instruction slot after a load is called
“load delay slot”

« If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

«If the compiler puts an unrelated
instruction in that slot, then no stall

«Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot (except the latter uses
more code space)

@ CSB1C L30 CPU Design : Pipelining to Improve Performance II (19)

Garcia, Spring 2007 © UCB|

Pipeline Hazard: Matching socks in later load

6 PM 7 8 9 10 11 12 1 2AM

B o g e ;
3030 30 30 30 30’30’ Time

| @ e 4

e 15 SR

R T

; 83 4
32 83 A

A depends on D; stall since folder tied up; Note this is
much different from processor cases so far. We have
@not had a earlier instruction depend on a /ater one.

Garcia, Spring 2007 © UCB|

CSB1C L30 CPU Design : Pipelining to Improve Performance If (23)

Data Hazard: Loads (4/4)
« Stall is equivalent to nop

($t1) [

nop

&
72

sub $t3,5t0,$t2
and $t5,5t0,5t4

&

or $t7,5t0,$t6

@ CSB1C L30 CPU Design : Pipelining to Improve Performance II (20)

oty

Garcia, Spring 2007 © UCB|

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 2AM

7 3030303030 3030 Ll
i

eyl =

& B4

o) A

i| & &

5 A

;
A depends on D; rest continue; need
more resources to allow out-of-order

Superscalar Laundry: Parallel per stage

6PM 7 8 9 10 11 12 1 2AM

30303030 30 Time

-
a j5° & (light clothing)
ié A (dark clothing)

6. A (very dirty clothing)

°'© @3 A (ightclothing)
Jd& (i A (darkclothing)
Er} PF * & (verydirty clothing)

More resources, HW to match mix of
@ parallel tasks?

CSB1C L30 CPU Design : Pipelining to Improve Performance If (25) Garcia, Spring 2007 © UCB|

CSB1C L30 CPU Design : Pipelining to Improve Performance If (24) Garcia, Spring 2007 © UCB|

Superscalar Laundry: Mismatch Mix
6PM 7 8 9 10 11 12 1 2AM

T 3030130303030 30 Time

a1 &@3 A (light clothing)

S = .

N [

‘| @

;& @3 A& (ight clothing)

el = B A (dark clothing)

e : A

r . .
B ﬁ% i (light clothing)

@Task mix underutilizes extra resources

CSB1C L30 CPU Design : Pipelining to Improve Performance Il (26) Garcia, Spring 2007 © UCB|

