
CS61C L30 CPU Design : Pipelining to Improve Performance II (1) Garcia, Spring 2007 © UCB

E-voting bill in congress! ⇒
Rep Rush Holt (D-NJ) has a

bill before congress (HR 811), which bans e-
voting machines without a paper trail. It also
mandates that the source code be available!

There are still details to be worked out, though.

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 30
 CPU Design : Pipelining to Improve Performance II

 2007-04-04

arstechnica.com/news.ars/post/20070401-congress-finally-considers-aggressive-e-voting-overhaul.html
CS61C L30 CPU Design : Pipelining to Improve Performance II (2) Garcia, Spring 2007 © UCB

Review: Processor Pipelining (1/2)
• “Pipeline registers” are added to the

datapath/controller to neatly divide the single
cycle processor into “pipeline stages”.
•Optimal Pipeline

• Each stage is executing part of an instruction
each clock cycle.
• One inst. finishes during each clock cycle.
• On average, execute far more quickly.

•What makes this work well?
• Similarities between instructions allow us to use

same stages for all instructions (generally).
• Each stage takes about the same amount of time

as all others: little wasted time.

CS61C L30 CPU Design : Pipelining to Improve Performance II (3) Garcia, Spring 2007 © UCB

Review: Pipeline (2/2)
• Pipelining is a BIG IDEA

• widely used concept

•What makes it less than perfect?
• Structural hazards: Conflicts for resources.

Suppose we had only one cache?
⇒ Need more HW resources
• Control hazards: Branch instructions effect

which instructions come next.
 ⇒ Delayed branch
• Data hazards: Data flow between instructions.

CS61C L30 CPU Design : Pipelining to Improve Performance II (4) Garcia, Spring 2007 © UCB

Control Hazard: Branching (1/8)

Where do we do the compare for the branch?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L30 CPU Design : Pipelining to Improve Performance II (5) Garcia, Spring 2007 © UCB

Control Hazard: Branching (2/8)
•We had put branch decision-making
hardware in ALU stage
• therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

•Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally
• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L30 CPU Design : Pipelining to Improve Performance II (6) Garcia, Spring 2007 © UCB

Control Hazard: Branching (3/8)

• Initial Solution: Stall until decision is
made
• insert “no-op” instructions (those that
accomplish nothing, just take time) or
hold up the fetch of the next instruction
(for 2 cycles).
•Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

CS61C L30 CPU Design : Pipelining to Improve Performance II (7) Garcia, Spring 2007 © UCB

Control Hazard: Branching (4/8)
•Optimization #1:
• insert special branch comparator in
Stage 2
• as soon as instruction is decoded
(Opcode identifies it as a branch),
immediately make a decision and set the
new value of the PC
•Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed
•Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L30 CPU Design : Pipelining to Improve Performance II (8) Garcia, Spring 2007 © UCB

Control Hazard: Branching (5/8)

Branch comparator moved to Decode stage.

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L30 CPU Design : Pipelining to Improve Performance II (9) Garcia, Spring 2007 © UCB

• User inserting no-op instruction

Control Hazard: Branching (6a/8)

add

beq

nop

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

lw

bub
ble

bub
ble

bub
ble

bub
ble

CS61C L30 CPU Design : Pipelining to Improve Performance II (10) Garcia, Spring 2007 © UCB

• Controller inserting a single bubble

Control Hazard: Branching (6b/8)

add

beq

lw

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L30 CPU Design : Pipelining to Improve Performance II (11) Garcia, Spring 2007 © UCB

Control Hazard: Branching (7/8)

•Optimization #2: Redefine branches
•Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident
•New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

•The term “Delayed Branch” means
we always execute inst after branch
•This optimization is used on the MIPS

CS61C L30 CPU Design : Pipelining to Improve Performance II (12) Garcia, Spring 2007 © UCB

Control Hazard: Branching (8/8)
•Notes on Branch-Delay Slot
•Worst-Case Scenario: can always put a
no-op in the branch-delay slot
•Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program
 re-ordering instructions is a common

method of speeding up programs
 compiler must be very smart in order to find

instructions to do this
 usually can find such an instruction at least

50% of the time
 Jumps also have a delay slot…

CS61C L30 CPU Design : Pipelining to Improve Performance II (13) Garcia, Spring 2007 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L30 CPU Design : Pipelining to Improve Performance II (14) Garcia, Spring 2007 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions

CS61C L30 CPU Design : Pipelining to Improve Performance II (15) Garcia, Spring 2007 © UCB

 Data-flow backward in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L30 CPU Design : Pipelining to Improve Performance II (16) Garcia, Spring 2007 © UCB

• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

 “or” hazard solved by register hardware

CS61C L30 CPU Design : Pipelining to Improve Performance II (17) Garcia, Spring 2007 © UCB

• Dataflow backwards in time are hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

• Can’t solve all cases with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L30 CPU Design : Pipelining to Improve Performance II (18) Garcia, Spring 2007 © UCB

• Hardware stalls pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg D$ Regbub

ble

or $t7,$t0,$t6 I$

A
LUReg D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

CS61C L30 CPU Design : Pipelining to Improve Performance II (19) Garcia, Spring 2007 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”
• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.
• If the compiler puts an unrelated
instruction in that slot, then no stall
•Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot (except the latter uses
more code space)

CS61C L30 CPU Design : Pipelining to Improve Performance II (20) Garcia, Spring 2007 © UCB

Data Hazard: Loads (4/4)
•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
LUReg D$

lw $t0, 0($t1) A
LUI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

nop

CS61C L30 CPU Design : Pipelining to Improve Performance II (23) Garcia, Spring 2007 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up; Note this is
much different from processor cases so far. We have
not had a earlier instruction depend on a later one.

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS61C L30 CPU Design : Pipelining to Improve Performance II (24) Garcia, Spring 2007 © UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
303030 3030 30 30

E

F

bubble

CS61C L30 CPU Design : Pipelining to Improve Performance II (25) Garcia, Spring 2007 © UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

CS61C L30 CPU Design : Pipelining to Improve Performance II (26) Garcia, Spring 2007 © UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

