
CS61C L31 Caches I (1) Garcia, Spring 2007 © UCB

Powerpoint bad!! ⇒
Research done at the

Univ of NSW says that “working
memory”, the brain part providing

temporary storage, is limited (3-4 things
for 20 sec unless rehearsal), and saying
what is on slides splits attention, & bad.

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 31 – Caches I

 2007-04-06

slashdot.org/article.pl?sid=07/04/04/1319247

CS61C L31 Caches I (2) Garcia, Spring 2007 © UCB

Review : Pipelining
•Pipeline challenge is hazards

• Forwarding helps w/many data hazards
• Delayed branch helps with control hazard in
our 5 stage pipeline

• Data hazards w/Loads ⇒ Load Delay Slot
 Interlock ⇒ “smart” CPU has HW to detect if

conflict with inst following load, if so it stalls

•More aggressive performance
(discussed in section next week)
• Superscalar (parallelism)
• Out-of-order execution

CS61C L31 Caches I (3) Garcia, Spring 2007 © UCB

Peer Instruction (2/2)
Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible.
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

Thanks to Peter Devore for catching this!

bne $s1, $0, Loop

A
LUI$ Reg D$ Reg

addiu $s1,$s1,-4
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg Patterson:
Real HW has this

forwarding (no stall),
but for simplicity, COD
doesn’t (stall) - p. 419.

?

CS61C L31 Caches I (4) Garcia, Spring 2007 © UCB

The Big Picture

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS61C L31 Caches I (5) Garcia, Spring 2007 © UCB

Memory Hierarchy

• Processor
• holds data in register file (~100 Bytes)
• Registers accessed on nanosecond timescale

•Memory (we’ll call “main memory”)
• More capacity than registers (~Gbytes)
• Access time ~50-100 ns
• Hundreds of clock cycles per memory access?!

• Disk
• HUGE capacity (virtually limitless)
• VERY slow: runs ~milliseconds

Storage in computer systems:

CS61C L31 Caches I (6) Garcia, Spring 2007 © UCB

Motivation: Why We Use Caches (written $)
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce

• 1989 first Intel CPU with cache on chip
• 1998 Pentium III has two levels of cache on chip

CS61C L31 Caches I (7) Garcia, Spring 2007 © UCB

Memory Caching

•Mismatch between processor and
memory speeds leads us to add a new
level: a memory cache
• Implemented with same IC processing
technology as the CPU (usually
integrated on same chip): faster but
more expensive than DRAM memory.
•Cache is a copy of a subset of main
memory.
•Most processors have separate caches
for instructions and data.

CS61C L31 Caches I (8) Garcia, Spring 2007 © UCB

Memory Hierarchy
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed
Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

CS61C L31 Caches I (9) Garcia, Spring 2007 © UCB

Memory Hierarchy

• If level closer to Processor, it is:
• smaller
• faster
• subset of lower levels (contains most
recently used data)

•Lowest Level (usually disk) contains
all available data (or does it go beyond
the disk?)
•Memory Hierarchy presents the
processor with the illusion of a very
large very fast memory.

CS61C L31 Caches I (10) Garcia, Spring 2007 © UCB

Memory Hierarchy Analogy: Library (1/2)

•You’re writing a term paper
(Processor) at a table in Doe
•Doe Library is equivalent to disk

• essentially limitless capacity
• very slow to retrieve a book

•Table is main memory
• smaller capacity: means you must return
book when table fills up

• easier and faster to find a book there
once you’ve already retrieved it

CS61C L31 Caches I (11) Garcia, Spring 2007 © UCB

Memory Hierarchy Analogy: Library (2/2)

•Open books on table are cache
• smaller capacity: can have very few open
books fit on table; again, when table fills up,
you must close a book

• much, much faster to retrieve data

• Illusion created: whole library open on
the tabletop

• Keep as many recently used books open on
table as possible since likely to use again

• Also keep as many books on table as
possible, since faster than going to library

CS61C L31 Caches I (12) Garcia, Spring 2007 © UCB

Memory Hierarchy Basis
•Cache contains copies of data in
memory that are being used.
•Memory contains copies of data on
disk that are being used.
•Caches work on the principles of
temporal and spatial locality.

• Temporal Locality: if we use it now,
chances are we’ll want to use it again
soon.

• Spatial Locality: if we use a piece of
memory, chances are we’ll use the
neighboring pieces soon.

CS61C L31 Caches I (13) Garcia, Spring 2007 © UCB

Cache Design

•How do we organize cache?
•Where does each memory address
map to?

(Remember that cache is subset of
memory, so multiple memory addresses
map to the same cache location.)

•How do we know which elements are
in cache?
•How do we quickly locate them?

CS61C L31 Caches I (14) Garcia, Spring 2007 © UCB

Administrivia

•Project 4 (on Caches) will be in
optional groups of two.
• I’m releasing old CS61C finals

• Check the course web page

CS61C L31 Caches I (15) Garcia, Spring 2007 © UCB

Direct-Mapped Cache (1/4)

• In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

• Therefore, we only need to look in a
single location in the cache for the data if
it exists in the cache

• Block is the unit of transfer between
cache and memory

CS61C L31 Caches I (16) Garcia, Spring 2007 © UCB

Direct-Mapped Cache (2/4)

 Cache Location 0 can be
 occupied by data from:
• Memory location 0, 4, 8, ...
• 4 blocks ⇒ any memory

location that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

What if we wanted a block
to be bigger than one byte?

Block size = 1 byte

CS61C L31 Caches I (17) Garcia, Spring 2007 © UCB

Direct-Mapped Cache (3/4)

• When we ask for a byte, the
system finds out the right block,
and loads it all!

• How does it know right block?
• How do we select the byte?

• E.g., Mem address 11101?
• How does it know WHICH

colored block it originated from?
• What do you do at baggage claim?

MemoryMemory
Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C

1E

8 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

01
23

etc
Block size = 2 bytes

45
67
89

CS61C L31 Caches I (18) Garcia, Spring 2007 © UCB

Direct-Mapped Cache (4/4)

• What should go in the tag?
• Do we need the entire address?

 What do all these tags have in
common?

• What did we do with the immediate
when we were branch addressing,
always count by bytes?

• Why not count by cache #?
• It’s useful to draw memory with the

same width as the block size

Memory
(addresses shown)

Memory Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C

1E

8 Byte Direct
Mapped Cache w/Tag!

Cache
Index

0
1
2
3

01
23

etc
 Tag Data
(Block size = 2 bytes)

45
67
89

8
3

1E
140

1

2

3
Cache#

0
0

3
2

CS61C L31 Caches I (19) Garcia, Spring 2007 © UCB

Issues with Direct-Mapped

•Since multiple memory addresses
map to same cache index, how do we
tell which one is in there?
•What if we have a block size > 1 byte?
•Answer: divide memory address into
three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

CS61C L31 Caches I (20) Garcia, Spring 2007 © UCB

Direct-Mapped Cache Terminology

•All fields are read as unsigned integers.
• Index: specifies the cache index (which
“row”/block of the cache we should
look in)
•Offset: once we’ve found correct block,
specifies which byte within the block
we want
•Tag: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

CS61C L31 Caches I (21) Garcia, Spring 2007 © UCB

TIO Dan’s great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks)
 * WIDTH (size of one block, B/block)

WIDTH
(size of one block, B/block)

HEIGHT
(# of blocks)

AREA
(cache size, B)

2(H+W) = 2H * 2W

Tag Index Offset

CS61C L31 Caches I (22) Garcia, Spring 2007 © UCB

Direct-Mapped Cache Example (1/3)

•Suppose we have a 16KB of data in a
direct-mapped cache with 4 word blocks
•Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture
•Offset

• need to specify correct byte within a block
• block contains 4 words

 = 16 bytes
 = 24 bytes

• need 4 bits to specify correct byte

CS61C L31 Caches I (23) Garcia, Spring 2007 © UCB

Direct-Mapped Cache Example (2/3)
• Index: (~index into an “array of blocks”)

• need to specify correct block in cache
• cache contains 16 KB = 214 bytes
• block contains 24 bytes (4 words)
• # blocks/cache

 = bytes/cache
bytes/block

 = 214 bytes/cache
 24 bytes/block

 = 210 blocks/cache
• need 10 bits to specify this many blocks

CS61C L31 Caches I (24) Garcia, Spring 2007 © UCB

Direct-Mapped Cache Example (3/3)
•Tag: use remaining bits as tag

• tag length = addr length – offset - index
 = 32 - 4 - 10 bits

 = 18 bits
• so tag is leftmost 18 bits of memory address

•Why not full 32 bit address as tag?
• All bytes within block need same address (4b)
• Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

CS61C L31 Caches I (25) Garcia, Spring 2007 © UCB

Peer Instruction

A. Mem hierarchies were invented before
1950. (UNIVAC I wasn’t delivered ‘til 1951)

B. If you know your computer’s cache size,
you can often make your code run faster.

C. Memory hierarchies take advantage of
spatial locality by keeping the most recent
data items closer to the processor.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L31 Caches I (27) Garcia, Spring 2007 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible.
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L31 Caches I (29) Garcia, Spring 2007 © UCB

And in Conclusion…
•We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.
•So we create a memory hierarchy:

• each successively lower level contains
“most used” data from next higher level

• exploits temporal & spatial locality
• do the common case fast, worry less
about the exceptions
(design principle of MIPS)

•Locality of reference is a Big Idea

