
CS61C L33 Caches III (1) Garcia, Spring 2007 © UCB

Future of movies is 3D? ⇒
Dreamworks says they may

exclusively release movies in this format. It’s
based on circular polarization. I recently saw

“Meet the Robinsons” in 3D, and I wouldn’t do it
again. Eyestrain, headache, and screen too dim!

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 33 – Caches III

 2007-04-11

www.cnn.com/2007/TECH/fun.games/04/09/3d.movies.ap/
en.wikipedia.org/wiki/Disney_Digital_3-D CS61C L33 Caches III (2) Garcia, Spring 2007 © UCB

Review…
•Mechanism for transparent movement of
data among levels of a storage hierarchy

• set of address/value bindings
• address ⇒ index to set of candidates
• compare desired address with tag
• service hit or miss

 load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index offset

CS61C L33 Caches III (3) Garcia, Spring 2007 © UCB

What to do on a write hit?

•Write-through
• update the word in cache block and
corresponding word in memory

•Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

•Performance trade-offs?
CS61C L33 Caches III (4) Garcia, Spring 2007 © UCB

Block Size Tradeoff (1/3)
•Benefits of Larger Block Size

• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon

• Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential array
accesses too

CS61C L33 Caches III (5) Garcia, Spring 2007 © UCB

Block Size Tradeoff (2/3)
•Drawbacks of Larger Block Size

• Larger block size means
larger miss penalty
 on a miss, takes longer time to load a new

block from next level
• If block size is too big relative to cache
size, then there are too few blocks
 Result: miss rate goes up

• In general, minimize
Average Memory Access Time (AMAT)

= Hit Time
+ Miss Penalty x Miss Rate

CS61C L33 Caches III (6) Garcia, Spring 2007 © UCB

Block Size Tradeoff (3/3)

•Hit Time = time to find and retrieve
data from current level cache
•Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)
•Hit Rate = % of requests that are found
in current level cache
•Miss Rate = 1 - Hit Rate

CS61C L33 Caches III (7) Garcia, Spring 2007 © UCB

Extreme Example: One Big Block

•Cache Size = 4 bytes Block Size = 4 bytes
• Only ONE entry (row) in the cache!

• If item accessed, likely accessed again soon
• But unlikely will be accessed again immediately!

•The next access will likely to be a miss again
• Continually loading data into the cache but
discard data (force out) before use it again

• Nightmare for cache designer: Ping Pong Effect

 Cache DataValid Bit
B 0B 1B 3

Tag
B 2

CS61C L33 Caches III (8) Garcia, Spring 2007 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

CS61C L33 Caches III (9) Garcia, Spring 2007 © UCB

Types of Cache Misses (1/2)

•“Three Cs” Model of Misses
•1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

CS61C L33 Caches III (10) Garcia, Spring 2007 © UCB

Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory

addresses map to the same cache location
• two blocks (which happen to map to the same

location) can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

 Fails at some point
• Solution 2: Multiple distinct blocks can fit in the

same cache Index?

CS61C L33 Caches III (11) Garcia, Spring 2007 © UCB

Fully Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

•What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

CS61C L33 Caches III (12) Garcia, Spring 2007 © UCB

Fully Associative Cache (2/3)
•Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=
=

=

=
=
:

CS61C L33 Caches III (13) Garcia, Spring 2007 © UCB

Fully Associative Cache (3/3)

•Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

•Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

CS61C L33 Caches III (14) Garcia, Spring 2007 © UCB

Third Type of Cache Miss

•Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

•This is the primary type of miss for
Fully Associative caches.

CS61C L33 Caches III (15) Garcia, Spring 2007 © UCB

N-Way Set Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

•So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L33 Caches III (16) Garcia, Spring 2007 © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS61C L33 Caches III (17) Garcia, Spring 2007 © UCB

N-Way Set Associative Cache (2/3)

• Basic Idea
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches working in

parallel: each has its own valid bit and data

•Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the

determined set.
• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to find the

desired data within the block.

CS61C L33 Caches III (18) Garcia, Spring 2007 © UCB

N-Way Set Associative Cache (3/3)

•What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS61C L33 Caches III (19) Garcia, Spring 2007 © UCB

4-Way Set Associative Cache Circuit

tag
index

CS61C L33 Caches III (20) Garcia, Spring 2007 © UCB

Block Replacement Policy
• Direct-Mapped Cache: index completely

specifies position which position a block can
go in on a miss
• N-Way Set Assoc: index specifies a set, but

block can occupy any position within the set
on a miss
• Fully Associative: block can be written into

any position
•Question: if we have the choice, where

should we write an incoming block?
• If there are any locations with valid bit off

(empty), then usually write the new block into the
first one.

• If all possible locations already have a valid
block, we must pick a replacement policy: rule by
which we determine which block gets “cached
out” on a miss.

CS61C L33 Caches III (21) Garcia, Spring 2007 © UCB

Block Replacement Policy: LRU

•LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS61C L33 Caches III (22) Garcia, Spring 2007 © UCB

Block Replacement Example
•We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS61C L33 Caches III (23) Garcia, Spring 2007 © UCB

Block Replacement Example: LRU
•Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0
set 1

0 2lruset 0
set 1

 0: miss, bring into set 0 (loc 0)

 2: miss, bring into set 0 (loc 1)

 0: hit

 1: miss, bring into set 1 (loc 0)

 4: miss, bring into set 0 (loc 1, replace 2)

 0: hit

0set 0
set 1

lrulru

0 2set 0
set 1

lru lru

set 0
set 1

0
1 lru

lru24lru

set 0
set 1

0 4
1 lru

lru lru

CS61C L33 Caches III (24) Garcia, Spring 2007 © UCB

Big Idea
•How to choose between associativity,
block size, replacement & write policy?

•Design against a performance model
• Minimize: Average Memory Access Time
 = Hit Time
 + Miss Penalty x Miss Rate

• influenced by technology & program
behavior

•Create the illusion of a memory that is
large, cheap, and fast - on average
•How can we improve miss penalty?

CS61C L33 Caches III (25) Garcia, Spring 2007 © UCB

Improving Miss Penalty
•When caches first became popular, Miss
Penalty ~ 10 processor clock cycles
•Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

DRAM$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS61C L33 Caches III (26) Garcia, Spring 2007 © UCB

Analyzing Multi-level cache hierarchy

Proc $2
DRAM$

L1 hit
time

L1 Miss Rate
L1 Miss PenaltyAvg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS61C L33 Caches III (27) Garcia, Spring 2007 © UCB

And in Conclusion…
• We’ve discussed memory caching in detail.

Caching in general shows up over and over in
computer systems

• Filesystem cache
• Web page cache
• Game databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but we want to
do it repeatedly, do it once and cache the result.
• Cache design choices:

• Write through v. write back
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?

• Use performance model to pick between choices,
depending on programs, technology, budget, ...

CS61C L33 Caches III (28) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L33 Caches III (29) Garcia, Spring 2007 © UCB

Example

•Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

•Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L33 Caches III (30) Garcia, Spring 2007 © UCB

Ways to reduce miss rate

•Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time
(bigger caches are slower)

•More places in the cache to put each
block of memory – associativity

• fully-associative
 any block any line

• N-way set associated
 N places for each block
 direct map: N=1

CS61C L33 Caches III (31) Garcia, Spring 2007 © UCB

Typical Scale

•L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

•L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

•L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?
CS61C L33 Caches III (32) Garcia, Spring 2007 © UCB

Example: with L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

•L1 miss penalty = 5 + 0.15 * 200 = 35
•Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS61C L33 Caches III (33) Garcia, Spring 2007 © UCB

Example: without L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

•Avg mem access time = 1 + 0.05 x 200
= 11 cycles

•4x faster with L2 cache! (2.75 vs. 11)

CS61C L33 Caches III (34) Garcia, Spring 2007 © UCB

An actual CPU – Early PowerPC
• Cache

• 32 KByte Instructions
and 32 KByte Data L1
caches

• External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache

• Dual Memory
Management Units
(MMU) with Translation
Lookaside Buffers (TLB)

• Pipelining
• Superscalar (3

inst/cycle)
• 6 execution units (2

integer and 1 double
precision IEEE floating
point)

CS61C L33 Caches III (35) Garcia, Spring 2007 © UCB

An Actual CPU – Pentium M

32KB I$

32KB D$

CS61C L33 Caches III (38) Garcia, Spring 2007 © UCB

Peer Instructions

1. In the last 10 years, the gap between the access time
of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

