
CS61C L35 Virtual Memory II (1) Garcia, Spring 2007 © UCB

Hardware repair?! ⇒
This technology allows

you to “patch” your hardware after it has
been installed via “Pheonix” - FPGA (field
programmable gate array). The bad news:

hardware folks can be sloppy & fix later!

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 35 – Virtual Memory II

 2007-04-16

technologyreview.com/Infotech/18513

CS61C L35 Virtual Memory II (2) Garcia, Spring 2007 © UCB

Review

•Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings for each
process vs. tag/data in cache

•Virtual Memory allows protected sharing
of memory between processes
•Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

CS61C L35 Virtual Memory II (3) Garcia, Spring 2007 © UCB

Comparing the 2 levels of hierarchy
 Cache version Virtual Memory vers.
 Block or Line Page
 Miss Page Fault
 Block Size: 32-64B Page Size: 4K-8KB
 Placement: Fully Associative
Direct Mapped,
N-way Set Associative

 Replacement: Least Recently Used
LRU or Random (LRU)

 Write Thru or Back Write Back

CS61C L35 Virtual Memory II (4) Garcia, Spring 2007 © UCB

Notes on Page Table
• Solves Fragmentation problem: all chunks

same size, so all holes can be used
•OS must reserve “Swap Space” on disk for

each process
• To grow a process, ask Operating System

• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Each process has own Page Table
•Will add details, but Page Table is essence

of Virtual Memory

CS61C L35 Virtual Memory II (5) Garcia, Spring 2007 © UCB

Why would a process need to “grow”?
•A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code
static data
heap

stack

For now, OS somehow
prevents accesses
between stack and heap
(gray hash lines).

~ FFFF FFFFhex

~ 0hex

CS61C L35 Virtual Memory II (6) Garcia, Spring 2007 © UCB

Virtual Memory Problem #1
•Map every address ⇒ 1 indirection via
Page Table in memory per virtual
address ⇒ 1 virtual memory accesses =
2 physical memory accesses ⇒ SLOW!
•Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages
•Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?
•For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS61C L35 Virtual Memory II (7) Garcia, Spring 2007 © UCB

Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor TLB
Lookup Cache Main

Memory

VA PA
miss

hit data
Page
Table

hit

miss

On TLB miss, get page table entry from main memory

CS61C L35 Virtual Memory II (8) Garcia, Spring 2007 © UCB

Review Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L35 Virtual Memory II (9) Garcia, Spring 2007 © UCB

Address Translation using TLB

PPN Offset
Physical Address

VPN
Offset

Virtual Address

INDEX

TLB

Physical
Page
Number
P. P. N.

P. P. N.
...

TLB Tag
(Tag used
just like

in cache)
TLB Tag

Tag OffsetINDEX
Data Cache

Tag Data
Tag Data

TLB Tag

CS61C L35 Virtual Memory II (10) Garcia, Spring 2007 © UCB

Typical TLB Format
Physical Dirty Ref Valid Access

Tag Page # Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
 (much less than main memory access time)
• Dirty: since use write back, need to know whether
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

CS61C L35 Virtual Memory II (11) Garcia, Spring 2007 © UCB

What if not in TLB?

•Option 1: Hardware checks page table
and loads new Page Table Entry into
TLB
•Option 2: Hardware traps to OS, up to
OS to decide what to do

• MIPS follows Option 2: Hardware knows
nothing about page table

CS61C L35 Virtual Memory II (12) Garcia, Spring 2007 © UCB

What if the data is on disk?

•We load the page off the disk into a
free block of memory, using a DMA
transfer (Direct Memory Access –
special hardware support to avoid
processor)

• Meantime we switch to some other
process waiting to be run

•When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data will be in memory

CS61C L35 Virtual Memory II (13) Garcia, Spring 2007 © UCB

What if we don’t have enough memory?

•We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

• If clean (disk copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

•And update that program's page table
to reflect the fact that its memory
moved somewhere else
• If continuously swap between disk
and memory, called Thrashing

CS61C L35 Virtual Memory II (14) Garcia, Spring 2007 © UCB

We’re done with new material

Let’s now review w/Questions

CS61C L35 Virtual Memory II (15) Garcia, Spring 2007 © UCB

Peer Instruction

A. Locality is important yet different for cache
and virtual memory (VM): temporal locality for
caches but spatial locality for VM

B. Cache management is done by hardware
(HW), page table management by the
operating system (OS), but TLB management
is either by HW or OS

C. VM helps both with security and cost

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L35 Virtual Memory II (17) Garcia, Spring 2007 © UCB

Question (1/3)
•40-bit virtual address, 16 KB page

•36-bit physical address

•Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

Page Offset (? bits)Virtual Page Number (? bits)

Page Offset (? bits)Physical Page Number (? bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L35 Virtual Memory II (18) Garcia, Spring 2007 © UCB

(1/3) Answer
•40- bit virtual address, 16 KB (214 B)

•36- bit virtual address, 16 KB (214 B)

•Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

Page Offset (14 bits)Virtual Page Number (26 bits)

Page Offset (14 bits)Physical Page Number (22 bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L35 Virtual Memory II (19) Garcia, Spring 2007 © UCB

Question (2/3): 40b VA, 36b PA
•2-way set-assoc. TLB, 512 entries, 40b VA:

•TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits),
Virtual Page Number, Physical Page Number

•Number of bits in TLB Tag / Index / Entry?

Page Offset (14 bits)TLB Index (? bits)TLB Tag (? bits)

V D TLB Tag (? bits)Access (2 bits) Physical Page No. (? bits)

1: 12 / 14 / 38 (TLB Tag / Index / Entry)
2: 14 / 12 / 40
3: 18 / 8 / 44
4: 18 / 8 / 58

CS61C L35 Virtual Memory II (20) Garcia, Spring 2007 © UCB

(2/3) Answer
•2-way set-assoc data cache, 256 (28) “sets”, 2
TLB entries per set => 8 bit index

•TLB Entry: Valid bit, Dirty bit,
Access Control (2 bits),
Virtual Page Number, Physical Page Number

Page Offset (14 bits)

Virtual Page Number (26 bits)

TLB Index (8 bits)TLB Tag (18 bits)

V D TLB Tag (18 bits)Access (2 bits) Physical Page No. (22 bits)

1: 12 / 14 / 38 (TLB Tag / Index / Entry)
2: 14 / 12 / 40
3: 18 / 8 / 44
4: 18 / 8 / 58

CS61C L35 Virtual Memory II (21) Garcia, Spring 2007 © UCB

Question (3/3)
•2-way set-assoc, 64KB data cache, 64B block

•Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

•Number of bits in Data cache Tag / Index /
Offset / Entry?

Block Offset (? bits)
Physical Page Address (36 bits)

Cache Index (? bits)Cache Tag (? bits)

V D Cache Tag (? bits) Cache Data (? bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L35 Virtual Memory II (22) Garcia, Spring 2007 © UCB

(3/3) Answer
•2-way set-assoc data cache, 64K/1K (210)
“sets”, 2 entries per sets => 9 bit index

•Data Cache Entry: Valid bit, Dirty bit, Cache
tag + 64 Bytes of Data

Block Offset (6 bits)
Physical Page Address (36 bits)

Cache Index (9 bits)Cache Tag (21 bits)

V D Cache Tag (21 bits)
Cache Data (64 Bytes =

 512 bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L35 Virtual Memory II (23) Garcia, Spring 2007 © UCB

And in Conclusion…
•Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

•Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well
•Virtual Memory allows protected
sharing of memory between processes
with less swapping to disk

CS61C L35 Virtual Memory II (24) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L35 Virtual Memory II (25) Garcia, Spring 2007 © UCB

4 Qs for any Memory Hierarchy
• Q1: Where can a block be placed?

• One place (direct mapped)
• A few places (set associative)
• Any place (fully associative)

• Q2: How is a block found?
• Indexing (as in a direct-mapped cache)
• Limited search (as in a set-associative cache)
• Full search (as in a fully associative cache)
• Separate lookup table (as in a page table)

• Q3: Which block is replaced on a miss?
• Least recently used (LRU)
• Random

• Q4: How are writes handled?
• Write through (Level never inconsistent w/lower)
• Write back (Could be “dirty”, must have dirty bit)

CS61C L35 Virtual Memory II (26) Garcia, Spring 2007 © UCB

•Block #12 placed in 8 block cache:
• Fully associative
• Direct mapped
• 2-way set associative

 Set Associative Mapping = Block # Mod # of Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

Q1: Where block placed in upper level?

CS61C L35 Virtual Memory II (27) Garcia, Spring 2007 © UCB

•Direct indexing (using index and block
offset), tag compares, or combination
• Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L35 Virtual Memory II (28) Garcia, Spring 2007 © UCB

•Easy for Direct Mapped
•Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L35 Virtual Memory II (29) Garcia, Spring 2007 © UCB

Q4: What to do on a write hit?
•Write-through

• update the word in cache block and
corresponding word in memory

•Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before I/O !!!

•Performance trade-offs?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

CS61C L35 Virtual Memory II (30) Garcia, Spring 2007 © UCB

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS61C L35 Virtual Memory II (31) Garcia, Spring 2007 © UCB

Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

 (Read Only, Invisible to user programs, etc).
• Kernel data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

• Special Mode in processor (“Kernel mode”)
allows processor to change page table/TLB

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)

CS61C L35 Virtual Memory II (32) Garcia, Spring 2007 © UCB

Why Translation Lookaside Buffer (TLB)?

•Paging is most popular
implementation of virtual memory
(vs. base/bounds)
•Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection / indirection
•Cache of Page Table Entries (TLB)
makes address translation possible
without memory access in common
case to make fast

CS61C L35 Virtual Memory II (33) Garcia, Spring 2007 © UCB

Bonus slide: Virtual Memory Overview (1/4)
•User program view of memory:

• Contiguous
• Start from some set address
• Infinitely large
• Is the only running program

•Reality:
• Non-contiguous
• Start wherever available memory is
• Finite size
• Many programs running at a time

CS61C L35 Virtual Memory II (34) Garcia, Spring 2007 © UCB

Bonus slide: Virtual Memory Overview (2/4)
•Virtual memory provides:

• illusion of contiguous memory
• all programs starting at same set address
• illusion of ~ infinite memory
(232 or 264 bytes)

• protection

CS61C L35 Virtual Memory II (35) Garcia, Spring 2007 © UCB

Bonus slide: Virtual Memory Overview (3/4)
• Implementation:

• Divide memory into “chunks” (pages)
• Operating system controls page table
that maps virtual addresses into physical
addresses

• Think of memory as a cache for disk
• TLB is a cache for the page table

CS61C L35 Virtual Memory II (36) Garcia, Spring 2007 © UCB

Bonus slide: Virtual Memory Overview (4/4)
•Let’s say we’re fetching some data:

• Check TLB (input: VPN, output: PPN)
 hit: fetch translation
 miss: check page table (in memory)

• Page table hit: fetch translation
• Page table miss: page fault, fetch page

from disk to memory, return translation
to TLB

• Check cache (input: PPN, output: data)
 hit: return value
 miss: fetch value from memory

CS61C L35 Virtual Memory II (37) Garcia, Spring 2007 © UCB

Address Map, Mathematically
V = {0, 1, . . . , n - 1} virtual address space (n > m)
M = {0, 1, . . . , m - 1} physical address space
MAP: V --> M U {θ} address mapping function

MAP(a) = a' if data at virtual address a
is present in physical address a' and a' in M
= θ if data at virtual address a is not present in M

Processor
Name Space Va

Addr Trans
Mechanisma

Main
Memory

a'
physical
address

 Disk

OS performs
this transfer

OS fault
handler

0

page fault

