UC Berkeley CS61C : Machine Structures
Lecture 36 — Input / Output
2007-04-18

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Robson disk $ = [=TT EEe
Intel has a NAND & >
flash-based disk cache which can [
speed up access for laptops and
their slow disk drives. OS must

be “Robson-savvy” (Vista is btw) . il
% www.hexus.net/content/item.php?item=6861

CS61C L36 Input/ Output (1) Garcia, Spring 2007 © UCH

What if the data is on disk?

*We load the page off the disk into a
free block of memory, using a DMA
transfer (Direct Memory Access —
special hardware support to avoid
processor)

» Meantime we switch to some other
process waiting to be run

*«When the DMA is complete, we get an
interrupt and update the process's
page table

+ So when we switch back to the task, the
desired data will be in memory

CS61C L36 Input / Output (3) Garcia, Spring 2007 © UCH

Recall : 5 components of any Computer
Earlier Lectures ___Current Lectures__

| Computer / \ Keyboard,,
! ! - Mouse !
I| Processor (\jiemory Devices A !
| —active) |(passive) :
i1 | Control ! ; 1
| (“brain”) | |(where Disk, !
L}

: programs, m f Network :
| [Datapath [data live X
| (“brawn”)| [wheh . !
: running) N Display,)
N 7 Printer ,

Review

*Manage memory to disk? Treat as cache
« Included protection as bonus, now critical

+ Use Page Table of mappings for each
process vs. tag/data in cache

- TLB is cache of Virtual=Physical addr trans

«Virtual Memory allows protected sharing
of memory befween processes

* Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

Garcia, Spring 2007 © UCH

What if we don’t have enough memory?

*We chose some other page belonging
to a program and transfer it onto the
diskiif it is dirty

«If clean (disk copy is up-to-date),
just overwrite that data in memory

*We chose the page to evict based on
replacement policy (e.g., LRU)

* And update that program's page table
to reflect the fact that its memory
moved somewhere else

«If continuously swap between disk
@and memory, called Thrashing

CS61C L36 Input / Output (4)

Garcia, Spring 2007 © UCH

Motivation for Input/Output

*1/0 is how humans interact with
computers

/O gives computers long-term memory.

/O lets computers do amazing things:

* Read pressure of synthetic hand and control
synthetic arm and hand of fireman

.- Control propellers, fins, communicate
in BOB (Breathable Observable Bubble)

« Computer without I/O like a car without
wheels; great technology, but won’t get

@ you anywhere

CS61C L36 Input / Output (6)

Garcia, Spring 2007 © UCH

I/0 Device Examples and Speeds

+1/0 Speed: bytes transferred per second
(from mouse to Gigabit LAN: 7 orders of mag!)

« Device Behavior Partner Data Rate

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network lorO Machine 10,000.00
Graphics Display Output Human 30,000.00

Wired LAN Network lorO Machine 125,000.00
@ When discussing transfer rates, use 10*

CS61C L36 Input / Output (7) Garcia, Spring 2007 © UCH

Instruction Set Architecture for I/0

* What must the processor do for I/0?
*Input: reads a sequence of bytes
+ Output: writes a sequence of bytes

*Some processors have special input and
output instructions
« Alternative model (used by MIPS):
+ Use loads for input, stores for output
+ Called “Memory Mapped Input/Output”

+ A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

Garcia, Spring 2007 © UCH

Processor-1/0 Speed Mismatch

*1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

+1/0 devices data rates range from 0.01
KB/s to 125,000 KB/s

«Input: device may not be readP(to send
data as fast as the processor loads it

* Also, might be waiting for human to act

« Output: device not be ready to accept
data as fast as processor stores it

*What to do?

@ CS61C L36 Input / Output (1)

Garcia, Spring 2007 © UCH

What do we need to make I/0 work?

« A way to connect many
types of devices to the Files APls

roc-Mem Operating System
* A way to control these

devices, respond to
them, and transfer data

« A way to present them
to user programs so
they are useful

= oe» T
=
Q!

Memory Mapped I/O

«Certain addresses are not regular
memory

«Instead, they correspond to registers
in /O devices

address

OXFFFFFFFF

0xFFFF0000

Garcia, Spring 2007 © UCH

Processor Checks Status before Acting
*Path to device generally has 2 registers:

- Control Register, says it’s OK to read/write
(IO ready) [think of a flagman on a road]

- Data Register, contains data
* Processor reads from Control Relgister

in loop, waiting for device to set Read
bit in Control |%g (0 = 1) to say its OK

* Processor then loads from (input) or
writes to (output) data register

- Load from or Store into Data Register
resets Ready bit (1 = 0) of Control

@ Register

Garcia, Spring 2007 © UCH

SPIM I/O Simulation

* SPIM simulates 1 /O device: memory-
mapped terminal (keyboard + display)

* Read from keyboard (receiver); 2 device regs
+ Writes to terminal (transmitter); 2 device regs

Receiver Control =z
OxEEEF0000 Unused (00...00) Rl
Receiver Data Received
ox££££0004 | Unused (00...00) Byte
. —[2
Transmitter Control Unused (00...00) m gL
Oxf£f££0008 <
Transmitter Data Transmitted
ox££££000c| Unused Byte

ﬂ CS61C L36 Input / Output (13)

Garcia, Spring 2007 © UCH

I/0 Example
¢ Input: Read from keyboard into $vO0

lui $t0, Oxffff
Waitloop: 1w 5tl, 0($t0)

andi $t1,$tl,0x1

beq $tl,$zero, Waitloop
1w v0, 4($t0)

 Output: Write to display from $a0

lui $t0, Oxffff
Waitloop: 1w 5tl, 8($t0)

andi $t1,$tl,0x1

beq $tl,$zero, Waitloop

sw $Sa0, 12($t0)

* Processor waiting for I/O called “Polling”

z “Ready” bit is from processor’s point of view!

CS61C L36 Input / Output (15)

Garcia, Spring 2007 © UCH

Upcoming Calendar

Week # Mon Wed Thu Lab Fri
/0
/O Basics VM Networks
(Alex)
Writing
/O Disks | Performance PJ{I(i)ng reacl%feast
(Aaron)

Parallel? I/O
Re- Parallel .
configurable | Computing | Networking | Parallel

- b &61C Computing
Computin in Software :
(Mic’?\ael)g (Matt) ngdreg;ik in Hardware
LAST
CLASS V\éed 2pm
Summary, eview
Review, 10 Evans
HKN Evals

ﬂ FINAL EXAM Sat 2007-05-12 @ 12:30pm-3:30pm 2050 VLSB

CS61C L36 Input / Output (17) Garcia, Spring 2007 © UCH

SPIM /O
« Control register rightmost bit (0): Ready

* Receiver: Ready==1 means character in Data
Register not yet been read;
1= 0 when data is read from Data Reg

* Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 = Transmitter still busy writing last char

= |L.E. bit discussed later
« Data register rightmost byte has data

» Receiver: last char from keyboard; rest = 0

* Transmitter: when write rightmost byte,
writes char to display

CS61C L36 Input / Output (14) Garcia, Spring 2007 © UCH

Administrivia

*Only 8 lectures after this one! :~(

* Almost every other one by an
outstanding TA

*Project 4 (Cache simulator) out soon
» You may work in pairs for this project

* Project 3 will be graded face-to-face,
check web page for scheduling

*Final: 2007-05-12 @ 12:30pm-3:30pm
here in 2050 VLSB!

Q CS61C L36 Input / Output (16)

Garcia, Spring 2007 © UCH

What is the alternative to polling?

« Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

*Would like an unplanned procedure
call that would be invoked only when
I/0 device is ready

«Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

Garcia, Spring 2007 © UCH

I/0 Interrupt
*An l/O interrupt is like overflow
exceptions except:
+ An I/O interrupt is “asynchronous”
» More information needs to be conveyed
* An /O interrupt is asynchronous with
respect to instruction execution:

+1/0 interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

+1/O interrupt does not prevent any
instruction from completion

ﬂ CS61C L36 Input / Output (19)

Garcia, Spring 2007 © UCH

SPIM I/O Simulation: Interrupt Driven I/O
*|.E. stands for Interrupt Enable

*Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Receiver Control =7
0XEEEE0000 Unused (00...00) m §
Receiver Data Received
ox££££0004 | Unused (00...00) Byte
. —[20
Transmitter Control Unused (00...00) o8
Oxf£f££0008 <
Transmitter Dat: Transmitted
0xffffooo:' Unused Byte

Q CS61C L36 Input / Output (21)

Garcia, Spring 2007 © UCH

“And in conclusion...”
*I/O gives computers their 5 senses
+1/0 speed range is 100-million to one

* Processor speed means must
synchronize with I/O devices before use

« Polling works, but expensive
- processor repeatedly queries devices
e Interrupts works, more complex

* devices causes an exception, causing
OS to run and deal with the device

«1/O control leads to Operating Systems

ﬂ CS61C L36 Input / Output (24)

Garcia, Spring 2007 © UCH

Interrupt-Driven Data Transfer
Memory
(1) Vo “ add
interrupt " | sub | user
7| and | program
(2) save PC| *|_or
(3) jump to
interrupt
service
routine (read interrupt
@ store | service
perform l" routine
ﬂ transfer

Garcia, Spring 2007 © UCH

Peer Instruction

A. A faster CPU will result in faster I/0.

B. Hardware designers handle mouse input
with interrupts since it is better than
polling in almost all cases.

C. Low-level I/O is actually quite simple, as
ﬂl’s really only reading and writing bytes.

CS61C L36 Input / Output (22)

0
1
2:
3:
4.
5
6
7

: TTT

Garcia, Spring 2007 © UCH

Bonus slides

included in lecture notes, but have

to serve as a supplement.

*These are extra slides that used to be

been moved to this, the “bonus” area

*The slides will appear in the order they
would have in the normal presentation

Bonus

Garcia, Spring 2007 © UCH

Definitions for Clarification

* Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

* Interrupt: asynchronous exception
+ Trap: synchronous exception
*Note: Many systems folks say

“interrupt’” to mean what we mean
when we say “exception”.

ﬂ CS61C L36 Input / Output (26)

Garcia, Spring 2007 © UCH

% Processor time to poll [p. 677 in book]
Mouse Polling

=30 * 400 =12K
* % Processor for polling:
12103 /1*10° =0.0012%

= Polling mouse little impact on processor

Frequency of Polling Floppy

=50 /2 = 25K
« Floppy Polling, Clocks/sec

= 25K * 400 =10M
* % Processor for polling:

10*108 /1*10° =1%

OK if not too many I/O devices

CS61C L36 Input / Output (28)

Garcia, Spring 2007 © UCH

Benefit of Interrupt-Driven I/O

*Find the % of processor consumed if the
hard disk is only active 5% of the time.
Assuming 500 clock cycle overhead for
each transfer, including interrupt:

+ Disk Interrupts/s = 16 /16
=1M
+ Disk Interrupts
=1M * 500
= 500,000,000
* % Processor for during transfer:
500*108 /1*10° =50%

*Disk active 5% = 5% * 50% = 2.5% busy

ﬂ CS61C L36 Input / Output (30)

Garcia, Spring 2007 © UCH

Cost of Polling?

* Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

» Mouse: polled 30 times/sec so as not to miss
user movement

* Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

» Hard disk: transfers data in 16-Byte chunks
and can transfer at 16 MB/second. Again, no
transfer can be missed.

Garcia, Spring 2007 © UCH

% Processor time to poll hard disk

Frequency of Polling Disk

=16 /16 =1M
«Disk Polling, Clocks/sec
=1M * 400
= 400M
*% Processor for polling:
400*10°¢ /1*10° =40%

= Unacceptable

Q CS61C L36 Input / Output (29)

Garcia, Spring 2007 © UCH

