

• I/O Speed: byt (from mouse to	es transf Gigabit LA	ferred per AN: 7 order	second s of mag!)
Device	Behavior	Partner	Data Rate (KBytes/s)
Keyboard	Input	Human	0.01
Mouse	Input	Human	0.02
Voice output	Output	Human	5.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Wireless Network	l or O	Machine	10,000.00
Graphics Display	Output	Human	30,000.00
Wired LAN Network	l or O	Machine	125,000.00

Instruction Set Architecture for I/O

- What must the processor do for I/O?
 Input: reads a sequence of bytes
 Output: writes a sequence of bytes
- Some processors have special input and output instructions
- Alternative model (used by MIPS):
 - Use loads for input, stores for output
 - Called "Memory Mapped Input/Output"
- A portion of the address space dedicated to communication paths to Input or Output devices (no memory there)

Memory Mapped I/O

SPIM I/O Simula	tion	
 SPIM simulates mapped termina 	1 I/O device: n I (keyboard + (nemory- display)
 Read from keybo 	oard (<u>receiver</u>); 2	device regs
Writes to termina	al (<u>transmitter</u>); 2	2 device regs
Receiver Control	Unused (00()0) (I.E.)
Receiver Data 0xffff0004	Unused (0000)	Received Byte
Transmitter Control	Unused (0000)	
Transmitter Data 0xfff000c	Unused	Transmitted Byte
CS61C L36 Input / Output (13)		Garcia, Spring 2007 @

Week #	Mon	Wed	Thu Lab	Fri
#13 This week		I/O Basics	VM	I/O Networks (Alex)
#14 Next week	I/O Disks	Performance	l/O Polling	Writing really fast code (Aaron)
#15 Penultimate week o' classes	Re- configurable Computing (Michael)	Parallel Computing in Software (Matt)	Parallel? I/O Networking & 61C Feedback Survey	Parallel Computing in Hardware
#16 Last week o' classes	LAST CLASS Summary, Review, & HKN Evals	Wed 2pm Review 10 Evans		

Benefit of Interrupt-Driven I/O

CS61C L36 Input / Output (30)

• Find the % of processor consumed if the hard disk is only active 5% of the time. Assuming 500 clock cycle overhead for each transfer, including interrupt: • Disk Interrupts/s = 16 [MB/s] / 16 [B/interrupt] = 1M [interrupts/s] Disk Interrupts [clocks/s] = 1M [interrupts/s] * 500 [clocks/interrupt] = 500,000,000 [clocks/s] % Processor for during transfer:

- 500*10⁶ [clocks/s] / 1*10⁹ [clocks/s] = 50%
- Disk active $5\% \Rightarrow 5\% * 50\% \Rightarrow 2.5\%$ busy Cal

Garcia, Spring 2007 © UCE