
CS61C L36 Input / Output (1) Garcia, Spring 2007 © UCB

Robson disk $ ⇒
Intel has a NAND

flash-based disk cache which can
speed up access for laptops and

their slow disk drives. OS must
be “Robson-savvy” (Vista is btw)

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 36 – Input / Output

 2007-04-18

www.hexus.net/content/item.php?item=6861
CS61C L36 Input / Output (2) Garcia, Spring 2007 © UCB

Review

•Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings for each
process vs. tag/data in cache

• TLB is cache of Virtual⇒Physical addr trans

•Virtual Memory allows protected sharing
of memory between processes
•Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

CS61C L36 Input / Output (3) Garcia, Spring 2007 © UCB

What if the data is on disk?

•We load the page off the disk into a
free block of memory, using a DMA
transfer (Direct Memory Access –
special hardware support to avoid
processor)

• Meantime we switch to some other
process waiting to be run

•When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data will be in memory

CS61C L36 Input / Output (4) Garcia, Spring 2007 © UCB

What if we don’t have enough memory?

•We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

• If clean (disk copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

•And update that program's page table
to reflect the fact that its memory
moved somewhere else
• If continuously swap between disk
and memory, called Thrashing

CS61C L36 Input / Output (5) Garcia, Spring 2007 © UCB

Recall : 5 components of any Computer

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

Earlier Lectures Current Lectures

CS61C L36 Input / Output (6) Garcia, Spring 2007 © UCB

Motivation for Input/Output

• I/O is how humans interact with
computers
• I/O gives computers long-term memory.
• I/O lets computers do amazing things:

• Read pressure of synthetic hand and control
synthetic arm and hand of fireman

• Control propellers, fins, communicate
in BOB (Breathable Observable Bubble)

•Computer without I/O like a car without
wheels; great technology, but won’t get
you anywhere

CS61C L36 Input / Output (7) Garcia, Spring 2007 © UCB

I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 7 orders of mag!)
• Device Behavior Partner Data Rate

 (KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 125,000.00

When discussing transfer rates, use 10x
CS61C L36 Input / Output (8) Garcia, Spring 2007 © UCB

What do we need to make I/O work?

•A way to present them
to user programs so
they are useful

cmd reg.
data reg.

Operating System
APIsFiles

Proc Mem

•A way to connect many
types of devices to the
Proc-Mem

PCI Bus

SCSI Bus

•A way to control these
devices, respond to
them, and transfer data

CS61C L36 Input / Output (9) Garcia, Spring 2007 © UCB

Instruction Set Architecture for I/O
•What must the processor do for I/O?

• Input: reads a sequence of bytes
• Output: writes a sequence of bytes

•Some processors have special input and
output instructions
•Alternative model (used by MIPS):

• Use loads for input, stores for output
• Called “Memory Mapped Input/Output”
• A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

CS61C L36 Input / Output (10) Garcia, Spring 2007 © UCB

Memory Mapped I/O

•Certain addresses are not regular
memory
• Instead, they correspond to registers
in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

CS61C L36 Input / Output (11) Garcia, Spring 2007 © UCB

Processor-I/O Speed Mismatch
•1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

• I/O devices data rates range from 0.01
KB/s to 125,000 KB/s

• Input: device may not be ready to send
data as fast as the processor loads it

• Also, might be waiting for human to act

•Output: device not be ready to accept
data as fast as processor stores it
•What to do?

CS61C L36 Input / Output (12) Garcia, Spring 2007 © UCB

Processor Checks Status before Acting
•Path to device generally has 2 registers:

• Control Register, says it’s OK to read/write
(I/O ready) [think of a flagman on a road]

• Data Register, contains data

•Processor reads from Control Register
in loop, waiting for device to set Ready
bit in Control reg (0 ⇒ 1) to say its OK
•Processor then loads from (input) or
writes to (output) data register

• Load from or Store into Data Register
resets Ready bit (1 ⇒ 0) of Control
Register

CS61C L36 Input / Output (13) Garcia, Spring 2007 © UCB

SPIM I/O Simulation
•SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

Ready
(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

Ready
(I.E.)Unused (00...00)

Unused

CS61C L36 Input / Output (14) Garcia, Spring 2007 © UCB

SPIM I/O
•Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data
Register not yet been read;
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char
 I.E. bit discussed later

•Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte,
writes char to display

CS61C L36 Input / Output (15) Garcia, Spring 2007 © UCB

I/O Example
• Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

•Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

• Processor waiting for I/O called “Polling”
• “Ready” bit is from processor’s point of view!

CS61C L36 Input / Output (16) Garcia, Spring 2007 © UCB

Administrivia

•Only 8 lectures after this one! :-(
• Almost every other one by an
outstanding TA

•Project 4 (Cache simulator) out soon
• You may work in pairs for this project

•Project 3 will be graded face-to-face,
check web page for scheduling
•Final: 2007-05-12 @ 12:30pm-3:30pm
here in 2050 VLSB!

CS61C L36 Input / Output (17) Garcia, Spring 2007 © UCB

Upcoming Calendar

I/O
Networks

(Alex)
VMI/O Basics

#13
This week

Wed 2pm
Review

10 Evans

Parallel
Computing
in Software

(Matt)

Performance

Wed

LAST
CLASS

Summary,
Review, &
HKN Evals

#16
Last week
o’ classes

Parallel
Computing
in Hardware

Parallel? I/O
Networking

& 61C
Feedback

Survey

Re-
configurable
Computing
(Michael)

#15
Penultimate

week o’
classes

Writing
really fast

code
(Aaron)

I/O
PollingI/O Disks

#14
Next week

FriThu LabMonWeek #

FINAL EXAM Sat 2007-05-12 @ 12:30pm-3:30pm 2050 VLSB
CS61C L36 Input / Output (18) Garcia, Spring 2007 © UCB

What is the alternative to polling?

•Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready
•Would like an unplanned procedure
call that would be invoked only when
I/O device is ready
•Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

CS61C L36 Input / Output (19) Garcia, Spring 2007 © UCB

I/O Interrupt
•An I/O interrupt is like overflow
exceptions except:

• An I/O interrupt is “asynchronous”
• More information needs to be conveyed

•An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

CS61C L36 Input / Output (20) Garcia, Spring 2007 © UCB

Interrupt-Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to
interrupt
service
routine
(4)
perform
transfer

(5)

CS61C L36 Input / Output (21) Garcia, Spring 2007 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
•Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

Ready
(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

Ready
(I.E.)Unused (00...00)

Unused

CS61C L36 Input / Output (22) Garcia, Spring 2007 © UCB

Peer Instruction

A. A faster CPU will result in faster I/O.
B. Hardware designers handle mouse input

with interrupts since it is better than
polling in almost all cases.

C. Low-level I/O is actually quite simple, as
it’s really only reading and writing bytes.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L36 Input / Output (24) Garcia, Spring 2007 © UCB

“And in conclusion…”
• I/O gives computers their 5 senses
• I/O speed range is 100-million to one
•Processor speed means must
synchronize with I/O devices before use
•Polling works, but expensive

• processor repeatedly queries devices
• Interrupts works, more complex

• devices causes an exception, causing
OS to run and deal with the device

• I/O control leads to Operating Systems

CS61C L36 Input / Output (25) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L36 Input / Output (26) Garcia, Spring 2007 © UCB

Definitions for Clarification

•Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception

•Note: Many systems folks say
“interrupt” to mean what we mean
when we say “exception”.

CS61C L36 Input / Output (27) Garcia, Spring 2007 © UCB

Cost of Polling?
•Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss
user movement

• Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

• Hard disk: transfers data in 16-Byte chunks
and can transfer at 16 MB/second. Again, no
transfer can be missed.

CS61C L36 Input / Output (28) Garcia, Spring 2007 © UCB

% Processor time to poll [p. 677 in book]
Mouse Polling [clocks/sec]

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]
• % Processor for polling:

12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
⇒ Polling mouse little impact on processor

Frequency of Polling Floppy
= 50 [KB/s] / 2 [B/poll] = 25K [polls/s]

• Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

• % Processor for polling:
10*106 [clocks/s] / 1*109 [clocks/s] = 1%
⇒ OK if not too many I/O devices

CS61C L36 Input / Output (29) Garcia, Spring 2007 © UCB

% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B/poll] = 1M [polls/s]

•Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]
•% Processor for polling:

400*106 [clocks/s] / 1*109 [clocks/s] = 40%
⇒ Unacceptable

CS61C L36 Input / Output (30) Garcia, Spring 2007 © UCB

Benefit of Interrupt-Driven I/O
•Find the % of processor consumed if the
hard disk is only active 5% of the time.
Assuming 500 clock cycle overhead for
each transfer, including interrupt:

• Disk Interrupts/s = 16 [MB/s] / 16 [B/interrupt]
 = 1M [interrupts/s]

• Disk Interrupts [clocks/s]
= 1M [interrupts/s] * 500 [clocks/interrupt]
= 500,000,000 [clocks/s]

• % Processor for during transfer:
500*106 [clocks/s] / 1*109 [clocks/s] = 50%

•Disk active 5% ⇒ 5% * 50% ⇒ 2.5% busy

