

I/O Review

- I/O gives computers their 5 senses
- I/O speed range is 12.5-million to one
- Differences in processor and I/O speed → synchronize with I/O devices before use
- Polling works, but expensive
- processor repeatedly queries devices
- Interrupts works, more complex
 - device causes an exception, causing OS to run and deal with the device
- I/O control leads to Operating Systems

Kronrod @ IIC

Why Networks?

- Originally sharing I/O devices between computers

 ex: printers
- Then communicating between computers
 ex: file transfer protocol
- Then communicating between people
- Then communicating between networks of computers

ex: file sharing, www, ...

al

Kronrod © U

How Big is the Network (2007)?

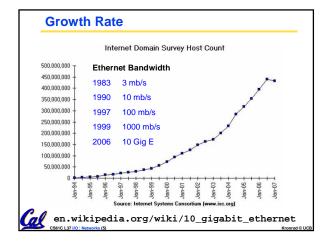
~30 in 273 Soda

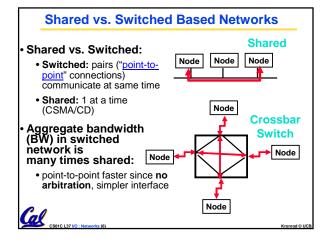
~525 in inst.cs.berkeley.edu

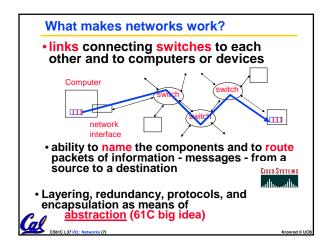
~6,400 in eecs & cs .berkelev.edu

(1999) ~50,000 in berkeley.edu

~10,000,000 in .edu (2005: ~9,000,000)

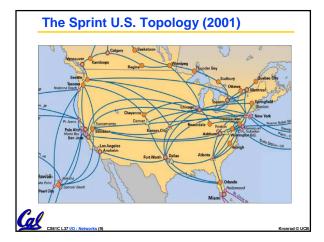

~258,941,310 in US (2005: ~217,000,000, 2006: ~286.5E6) (.net .com .edu .arpa .us .mil .org .gov)


~433,190,000 in the world


(2005:~317,000,000, 2006: ~439,000,000)

Source: Internet Software Consortium: www.isc.org

Kronrod © U



Typical Types of Networks

- Local Area Network (Ethernet)
 - Inside a building: Up to 1 km
 - (peak) Data Rate: 10 Mbits/sec, 100 Mbits /sec,1000 Mbits/sec (1.25, 12.5, 125 MBytes/s)
 - · Run, installed by network administrators
- Wide Area Network
 - Across a continent (10km to 10000 km)
 - (peak) Data Rate: 1.5 Mb/s to 10000 Mb/s
 - Run, installed by telecommunications companies (Sprint, UUNet[MCI], AT&T)

Wireless Networks (LAN), ...

Kronrod © UCE

Administrivia

- Crunch time
 - Last Lecture and Course Surveys on Monday 2007-05-07
 - Final Review Session on Wed 2007-05-09
 - 3 weeks + 1 day until the Final ...
 - Final Exam on Saturday 2007-05-12 12:30-3:30 @ 2050 VLSB. IS MANDATORY!
- Project 4 is out!
 - May work in pairs.

ronrod @ HC

ABCs of Networks: 2 Computers • Starting Point: Send bits between 2 computers app network interface device • Queue (First In First Out) on each end • Can send both ways ("Full Duplex")

- One-way information is called "Half Duplex"
- Information sent called a "message"
- Note: Messages also called packets

Kronrod © UCB

A Simple Example: 2 Computers

- What is Message Format?
 - Similar idea to Instruction Format
 - Fixed size? Number bits?

Length

Data

8 bit 32 x Length bits

- Header (Trailer): information to deliver message
- · Payload: data in message
- · What can be in the data?
 - · anything that you can represent as bits
 - · values, chars, commands, addresses...

CS61C L37 I/O : Networks (12)

Kronrod © U

Questions About Simple Example

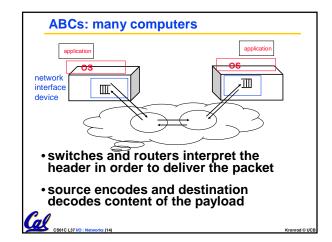
- What if more than 2 computers want to communicate?
 - Need computer "address field" in packet to know:
 - which computer should receive it (destination)
 - which computer to reply to (source)
 - Just like envelopes!

Dest. Source Len

Net ID Net ID

CMD/ Address /Data

8 bits 8 bits 8 bits


32*n bits

Header

Payload

Kronrod © UC

Questions About Simple Example

- What if message is garbled in transit?
- Add redundant information that is checked when message arrives to be sure it is OK
- 8-bit sum of other bytes: called "Check sum"; upon arrival compare check sum to sum of rest of information in message. xor also popular.

Checksum

Net ID Net ID Len

CMD/ Address /Data

Header

Payload

Trailer

Learn about Checksums in Math 55/CS 70...

Kronrod (

Questions About Simple Example

- · What if message never arrives?
- Receiver tells sender when it arrives
 - Send an ACK (ACKnowledgement) [like registered mail]
 - · Sender retries if waits too long
- Don't discard message until it is ACK'ed
- · If check sum fails, don't send ACK

Checksum

Net ID Net ID Len A

_ . .

CMD/ Address /Data

Trailer

CS61C L37 I/O : Networks (16)

Payload

Kronrod © U

Observations About Simple Example

- Simple questions (like those on the previous slides) lead to:
 - more complex procedures to send/receive message
 - more complex message formats
- Protocol: algorithm for properly sending and receiving messages (packets)
 - ...an agreement on how to communicate

Kronrod © UC

Software Protocol to Send and Receive

- SW Send steps
 - 1: Application copies data to OS buffer
 - 2: OS calculates checksum, starts timer
 - 3: OS sends data to network interface HW and says start
- SW Receive steps
 - 3: OS copies data from network interface HW to OS buffer
 - 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)
 - 1: If OK, OS copies data to user address space, & signals application to continue

CS61C L37 I/O : Networks (18)

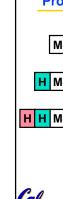
Kronrod ©

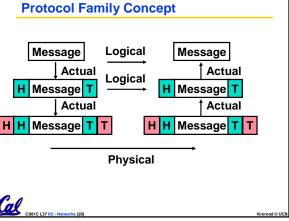
Protocol for Networks of Networks?

 Abstraction to cope with complexity of **communication** (compare to Abstraction for complexity

 Networks are like onions · Hierarchy of layers:

like onions They stink? Yes. No!


- Application (chat client, game, etc.)


Transport (TCP, UDP)

- Network (IP)

- Physical Link (wired, wireless, etc.)

No!... Layers. Onions have layers. Networks have layers.

Protocol Family Concept

 Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-

...but is implemented via services at the next lower level

- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble

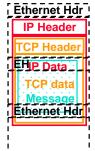
Protocol for Network of Networks

IP: Best-Effort Packet Delivery (Network Layer)

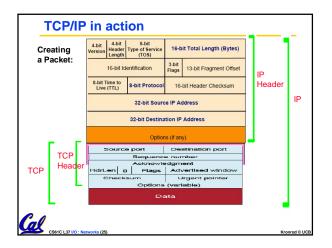
- Packet switching
 - · Send data in packets
 - Header with source & destination address
- "Best effort" delivery
 - Packets may be lost
 - Packets may be corrupted
 - Packets may be delivered out of order

Protocol for Network of Networks

• <u>Transmission Control Protocol/Internet Protocol (TCP/IP)</u>


(TCP :: a Transport Layer)

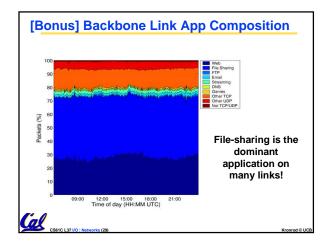
- This protocol family is the basis of the Internet, a WAN protocol
- IP makes best effort to deliver
- TCP guarantees delivery
- TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN



TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KiB segments, adds 20B heäder
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Overhead vs. Bandwidth


- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (μs), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s
 - $= 8000b / (100b/\mu s) = 80 \mu s$

Effective bandwidth: 8000b/(320+80)µs = 20 Mb/s
CSRIC L37 VO: Networks (28)
Knoted © UCB

And in conclusion...

- Protocol suites allow networking of heterogeneous components
 - Another form of principle of abstraction
 - Protocols ⇒ operation in presence of failures
 - Standardization key for LAN, WAN
- Integrated circuit ("Moore's Law") revolutionizing network switches as well as processors
 - Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth
- Interested?
 - EE122 (CS-based in Fall, EE -based in Spring)

[Bonus] Example: Network Media **Twisted Pair** Copper, 1mm think, twisted to ("Cat 5"): avoid antenna effect Light: 3 parts are cable, light Total internal Fiber Optics Air source, reflection Transmitter Is L.E.D or Laser Diode light Receiver detector - Photodiode light source Silica: glass or Cladding plastic; actually < 1/10 Buffer diameter of copper

