

Two Notions of "Performance""				
Plane	DC to Paris	Top Speed	Passen- gers	Throughput (pmph)
Boeing 747	6.5 hours	610 mph	470	286,700
BAD/Sud Concorde	3 3ours	1350 mph	132	178,200

-Which has higher performance? -Interested in time to deliver 100 passengers?
-Interested in delivering as many passengers per day as possible? -In a computer, time for one task called

Response Time or Execution Time
-In a computer, tasks per unit time called
Throughput or Bandwidth
CS61C L39 Performance (3) Garcia. Spring 2007 @ UCB

Example of Response Time v. Throughput

- Time of Concorde vs. Boeing 747?
- Concord is 6.5 hours $/ 3$ hours $=2.2$ times faster
- Throughput of Boeing vs. Concorde?
- Boeing 747: 286,700 pmph / 178,200 pmph $=1.6$ times faster
- Boeing is 1.6 times (" 60% ") faster in terms of throughput
- Concord is 2.2 times (" 120% ") faster in terms of flying time (response time)
We will focus primarily on response cofime. cs61C L39 Pertormance

Why Performance? Faster is better!

- Purchasing Perspective: given a collection of machines (or upgrade options), which has the
- best performance?
- least cost ?
- best performance / cost ?
- Computer Designer Perspective: faced with design options, which has the
- best performance improvement?
- least cost ?
- best performance / cost ?
- All require basis for comparison and metric for evaluation!
Cal : Solid metrics lead to solid progress! Cssctusamememern

Definitions

- Performance is in units of things per sec - bigger is better
- If we are primarily concerned with response time
- performance $(x)=\frac{1}{\text { execution_time(}(x)}$
" $\mathrm{F}($ ast $)$ is n times faster than $\mathrm{S}($ low) " means... performance(F) execution_time(S)
$n=$ performance(S) execution_time (F)
anconmern

Words, Words, Words...

- Will (try to) stick to "n times faster"; its less confusing than " m \% faster"
- As faster means both decreased execution time and increased performance, to reduce confusion we will (and you should) use "improve execution time" or
"improve performance"

Cal
Cs61C L39 Pertormance (6) Garcia, Spring 2007 @UCB

What is Time?

- Straightforward definition of time:
- Total time to complete a task, including disk accesses, memory accesses, I/O activities, operating system overhead, ...
- "real time", "response time" or "elapsed time"
- Alternative: just time processor (CPU) is working only on your program (since multiple processes running at same time)
- "CPU execution time" or "CPU time"
- Often divided into system CPU time (in OS) and user CPU time (in user program)
Cal csach cuseatemenera Garcia, Spring 2007 e UCB

Measuring Time using Clock Cycles (1/2)

- CPU execution time for a program
= Clock Cycles for a program x Clock Period
- or
= Clock Cycles for a program Clock Rate

cs61c L39 Perrormance (9)

How to Measure Time?

- Real Time \Rightarrow Actual time elapsed
- CPU Time: Computers constructed using a clock that runs at a constant rate and determines when events take place in the hardware
- These discrete time intervals called clock cycles (or informally clocks or cycles)
- Length of clock period: clock cycle time (e.g., 2 nanoseconds or 2 ns) and clock rate (e.g., 500 megahertz, or 500 MHz), which is the inverse of the clock period; use these!
Cal
CS61C L39 Performance (8) Garcia, Spring 2007 e UCB

Measuring Time using Clock Cycles (2/2)

- One way to define clock cycles:

Clock Cycles for program
= Instructions for a program
(called "Instruction Count")
x Average Clock cycles Per Instruction
(abbreviated "CPI")
-CPI one way to compare two machines with same instruction set, since Instruction Count would be the same

Cal
csectuaramere Garcla, Spring 2007 @ UCB


```
    How Calculate the 3 Components?
- Clock Cycle Time: in specification of
    computer (Clock Rate in advertisements)
- Instruction Count:
    -Count instructions in loop of small program
    - Use simulator to count instructions
    -Hardware counter in spec. register
        " (Pentium II,III,4)
-CPI:
    -Calculate: Execution Time / Clock cycle time
        Instruction Count
Cal
    Hardware counter in special register (PII,III,4)
```


Example (RISC processor)				
Op	Freq ${ }_{i}$	CPI_{i}	Prod	(\% Time)
ALU	50\%	1	. 5	(23\%)
Load	20\%	5	1.0	(45\%)
Store	10\%	3	. 3	(14\%)
Branch	20\%	2	. 4	(18\%)
Instruction Mix				

- What if Branch instructions twice as fast?

Benchmarks

- Obviously, apparent speed of processor depends on code used to test it
- Need industry standards so that different processors can be fairly compared
- Companies exist that create these benchmarks: "typical" code used to evaluate systems
- Need to be changed every ~ 5 years since designers could (and do!) target for these standard benchmarks
\qquad

Calculating CPI Another Way

- First calculate CPI for each individual instruction (add, sub, and, etc.)

- Next calculate frequency of each individual instruction

- Finally multiply these two for each instruction and add them up to get final CPI (the weighted sum)

Cal cancunamememene Garcia, Spring 2007 @uCB

What Programs Measure for Comparison?

- Ideally run typical programs with typical input before purchase, or before even build machine
- Called a "workload"; For example:
- Engineer uses compiler, spreadsheet
- Author uses word processor, drawing program, compression software
- In some situations its hard to do
- Don't have access to machine to "benchmark" before purchase
- Don't know workload in future
- Next: benchmarks \&

PC-Miac showdown!
Cal
cs61c L39 Perrormance (16) Garcla, Spring 2007 @ucB

Example Standardized Benchmarks (1/2)

- Standard Performance Evaluation Corporation (SPEC) SPEC CPU2006
-CINT2006 12 integer (perl, bzip, gcc, go, ...)
- CFP2006 17 floating-point (povray, bwaves, ...)
- All relative to base machine (which gets 100) Sun Ultra Enterprise 2 w/296 MHz UltraSPARC II
- They measure
- System speed (SPECint2006)
- System throughput (SPECint_rate2006)
-www. spec.org/osg/cpu2006/

Cal

cssicic laspertormenco (18)

Example Standardized Benchmarks (2/2)

- SPEC
- Benchmarks distributed in source code
- Members of consortium select workload
- 30+ companies, $40+$ universities, research labs
- Compiler, machine designers target benchmarks, so try to change every 5 years
- SPEC CPU2006:

Performance Evaluation: An Aside Demo

If we're talking about performance, let's discuss the ways shady salespeople have fooled consumers (so you don't get taken!)
5. Never let the user touch it
4. Only run the demo through a script
3. Run it on a stock machine in which "no expense was spared"
2. Preprocess all available data

1. Play a movie

CS61C L 39 Performance (21)

(as)

Peer Instruction

A. Rarely does a company selling a product give unbiased performance data.
B. The Sieve of Eratosthenes and Quicksort were early effective benchmarks.
C. A program runs in $\mathbf{1 0 0} \mathbf{~ s e c}$. on a machine, mult accounts for 80 sec . of that. If we want to make the program run 6 times faster, we need to up the speed of mults by AT LEAST 6 .

1 erformance (23)

	ABC
$0:$	FFF
$1:$	FFT
$2:$	FTF
$3:$	FTT
$4:$	TFF
$\mathrm{5}:$	TFT
$6:$	TTF
$7:$	TTT

Another Benchmark

- PCs: Ziff-Davis Benchmark Suite

- "Business Winstone is a system-level, application-based benchmark that measures a PC's overall performance when running today's top-selling Windows-based 32-bit applications... it doesn't mimic what these packages do; it runs real applications through a series of scripted activities and uses the time a PC takes to complete those activities to produce its performance scores.
- Also tests for CDs, Content-creation, Audio, 3D graphics, battery life
http://www.etestinglabs.com/benchmarks/ Cel
 Garcia, Spring 2007 e UCB

Megahertz Myth Marketing Movie

