
CS61C L39 Performance (1) Garcia, Spring 2007 © UCB

Fast CPU!⇒
TRIPS is a

UT Austin scaleable
architecture with replicated

tiles (like in a Bee’s eye).
Tcalulations/sec by 2012?

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 39 – Performance

 2007-04-23

www.cs.utexas.edu/~trips/ CS61C L39 Performance (2) Garcia, Spring 2007 © UCB

Why Performance? Faster is better!
•Purchasing Perspective: given a
collection of machines (or upgrade
options), which has the

 best performance ?
 least cost ?
 best performance / cost ?

•Computer Designer Perspective: faced
with design options, which has the

 best performance improvement ?
 least cost ?
 best performance / cost ?

•All require basis for comparison and
metric for evaluation!
•Solid metrics lead to solid progress!

CS61C L39 Performance (3) Garcia, Spring 2007 © UCB

Two Notions of “Performance”
Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours 470 286,700

1350
mph

3
hours 132 178,200

•Which has higher performance?
•Interested in time to deliver 100 passengers?
•Interested in delivering as many passengers per day as possible?
•In a computer, time for one task called

Response Time or Execution Time
•In a computer, tasks per unit time called

Throughput or Bandwidth
CS61C L39 Performance (4) Garcia, Spring 2007 © UCB

Definitions
•Performance is in units of things per sec
•bigger is better

• If we are primarily concerned with
response time
•performance(x) = 1

execution_time(x)

" F(ast) is n times faster than S(low) " means…
 performance(F) execution_time(S)
n = =

 performance(S) execution_time(F)

CS61C L39 Performance (5) Garcia, Spring 2007 © UCB

Example of Response Time v. Throughput
• Time of Concorde vs. Boeing 747?
• Concord is 6.5 hours / 3 hours

= 2.2 times faster
• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 pmph / 178,200 pmph

= 1.6 times faster
• Boeing is 1.6 times (“60%”) faster in

terms of throughput
• Concord is 2.2 times (“120%”) faster in

terms of flying time (response time)
We will focus primarily on response

time.
CS61C L39 Performance (6) Garcia, Spring 2007 © UCB

Words, Words, Words…

•Will (try to) stick to “n times faster”;
its less confusing than “m % faster”

•As faster means both decreased
execution time and increased
performance, to reduce confusion we
will (and you should) use
 “improve execution time” or

 “improve performance”

CS61C L39 Performance (7) Garcia, Spring 2007 © UCB

What is Time?
•Straightforward definition of time:
•Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...
• “real time”, “response time” or
“elapsed time”

•Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)
• “CPU execution time” or “CPU time”
•Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS61C L39 Performance (8) Garcia, Spring 2007 © UCB

How to Measure Time?
•Real Time ⇒ Actual time elapsed
•CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware
•These discrete time intervals called
clock cycles (or informally clocks or
cycles)
•Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

CS61C L39 Performance (9) Garcia, Spring 2007 © UCB

Measuring Time using Clock Cycles (1/2)

•or

= Clock Cycles for a program
Clock Rate

•CPU execution time for a program
 = Clock Cycles for a program

 x Clock Period

CS61C L39 Performance (10) Garcia, Spring 2007 © UCB

Measuring Time using Clock Cycles (2/2)

•One way to define clock cycles:
Clock Cycles for program
 = Instructions for a program

(called “Instruction Count”)

 x Average Clock cycles Per Instruction
 (abbreviated “CPI”)
•CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS61C L39 Performance (11) Garcia, Spring 2007 © UCB

Performance Calculation (1/2)

•CPU execution time for program
= Clock Cycles for program

 x Clock Cycle Time
•Substituting for clock cycles:

CPU execution time for program
= (Instruction Count x CPI)

 x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time

CS61C L39 Performance (12) Garcia, Spring 2007 © UCB

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Seconds
Program

• Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS61C L39 Performance (13) Garcia, Spring 2007 © UCB

How Calculate the 3 Components?
•Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)
• Instruction Count:
•Count instructions in loop of small program
•Use simulator to count instructions
•Hardware counter in spec. register

 (Pentium II,III,4)
•CPI:
•Calculate: Execution Time / Clock cycle time

Instruction Count
•Hardware counter in special register (PII,III,4)

CS61C L39 Performance (14) Garcia, Spring 2007 © UCB

Calculating CPI Another Way

•First calculate CPI for each individual
instruction (add, sub, and, etc.)
•Next calculate frequency of each
individual instruction
•Finally multiply these two for each
instruction and add them up to get
final CPI (the weighted sum)

CS61C L39 Performance (15) Garcia, Spring 2007 © UCB

Example (RISC processor)
Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)
 2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS61C L39 Performance (16) Garcia, Spring 2007 © UCB

What Programs Measure for Comparison?
• Ideally run typical programs with
typical input before purchase,
or before even build machine
•Called a “workload”; For example:
•Engineer uses compiler, spreadsheet
•Author uses word processor, drawing
program, compression software

• In some situations its hard to do
•Don’t have access to machine to
“benchmark” before purchase
•Don’t know workload in future

•Next: benchmarks &
PC-Mac showdown!

CS61C L39 Performance (17) Garcia, Spring 2007 © UCB

Benchmarks
•Obviously, apparent speed of
processor depends on code used to
test it
•Need industry standards so that
different processors can be fairly
compared
•Companies exist that create these
benchmarks: “typical” code used to
evaluate systems
•Need to be changed every ~5 years
since designers could (and do!) target
for these standard benchmarks

CS61C L39 Performance (18) Garcia, Spring 2007 © UCB

Example Standardized Benchmarks (1/2)

•Standard Performance Evaluation
Corporation (SPEC) SPEC CPU2006
•CINT2006 12 integer (perl, bzip, gcc, go, ...)
•CFP2006 17 floating-point (povray, bwaves, ...)
•All relative to base machine (which gets 100)
Sun Ultra Enterprise 2 w/296 MHz UltraSPARC II
•They measure

 System speed (SPECint2006)
 System throughput (SPECint_rate2006)

•www.spec.org/osg/cpu2006/

CS61C L39 Performance (19) Garcia, Spring 2007 © UCB

Example Standardized Benchmarks (2/2)
•SPEC
•Benchmarks distributed in source code
•Members of consortium select workload

 30+ companies, 40+ universities, research labs
•Compiler, machine designers target
benchmarks, so try to change every 5 years
•SPEC CPU2006:

CFP2006
bwaves Fortran Fluid Dynamics
gamess Fortran Quantum Chemistry
milc C Physics / Quantum Chromodynamics
zeusmp Fortran Physics / CFD
gromacs C,Fortran Biochemistry / Molecular Dynamics
cactusADM C,Fortran Physics / General Relativity
leslie3d Fortran Fluid Dynamics
namd C++ Biology / Molecular Dynamics
dealll C++ Finite Element Analysis
soplex C++ Linear Programming, Optimization
povray C++ Image Ray-tracing
calculix C,Fortran Structural Mechanics
GemsFDTD Fortran Computational Electromegnetics
tonto Fortran Quantum Chemistry
lbm C Fluid Dynamics
wrf C,Fortran Weather
sphinx3 C Speech recognition

CINT2006
perlbench C Perl Programming language
bzip2 C Compression
gcc C C Programming Language Compiler
mcf C Combinatorial Optimization
gobmk C Artificial Intelligence : Go
hmmer C Search Gene Sequence
sjeng C Artificial Intelligence : Chess
libquantum C Simulates quantum computer
h264ref C H.264 Video compression
omnetpp C++ Discrete Event Simulation
astar C++ Path-finding Algorithms
xalancbmk C++ XML Processing

CS61C L39 Performance (20) Garcia, Spring 2007 © UCB

Another Benchmark
•PCs: Ziff-Davis Benchmark Suite
• “Business Winstone is a system-level,
application-based benchmark that measures
a PC's overall performance when running
today's top-selling Windows-based 32-bit
applications… it doesn't mimic what these
packages do; it runs real applications
through a series of scripted activities and
uses the time a PC takes to complete those
activities to produce its performance scores.
•Also tests for CDs, Content-creation, Audio,
3D graphics, battery life

http://www.etestinglabs.com/benchmarks/

CS61C L39 Performance (21) Garcia, Spring 2007 © UCB

Performance Evaluation: An Aside Demo
If we’re talking about performance, let’s
discuss the ways shady salespeople have
fooled consumers (so you don’t get taken!)

5. Never let the user touch it
4. Only run the demo through a script
3. Run it on a stock machine in which “no

expense was spared”
2. Preprocess all available data
1. Play a movie

CS61C L39 Performance (22) Garcia, Spring 2007 © UCB

Megahertz Myth Marketing Movie

CS61C L39 Performance (23) Garcia, Spring 2007 © UCB

Peer Instruction

A. Rarely does a company selling a product give
unbiased performance data.

B. The Sieve of Eratosthenes and Quicksort were early
effective benchmarks.

C. A program runs in 100 sec. on a machine, mult
accounts for 80 sec. of that. If we want to make the
program run 6 times faster, we need to up the speed of
mults by AT LEAST 6.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L39 Performance (25) Garcia, Spring 2007 © UCB

“And in conclusion…”

• Latency v. Throughput
• Performance doesn’t depend on any single factor:

need Instruction Count, Clocks Per Instruction (CPI)
and Clock Rate to get valid estimations
• User Time: time user waits for program to execute:

depends heavily on how OS switches between tasks
• CPU Time: time spent executing a single program:

depends solely on design of processor (datapath,
pipelining effectiveness, caches, etc.)
• Benchmarks
• Attempt to predict perf, Updated every few years
• Measure everything from simulation of desktop

graphics programs to battery life
•Megahertz Myth
• MHz ≠ performance, it’s just one factor

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

