
CS61C L40 Writing Fast Code (1) Staley, Spring 2007 © UCB

TA Performaire Aaron Staley

inst.eecs.cs.berkeley.edu/

~cs61c-tg

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #40
Writing Fast code

2007-4-27

India offering free broadband by 2009

http://economictimes.indiatimes.com/News/News_By_Industry/Telecom/Broadband_to_go_free_i
n_2_yrs/articleshow/msid-1955351,curpg-2.cms

CS61C L40 Writing Fast Code (2) Staley, Spring 2007 © UCB

Speed

• We like things to run fast

• But what determines speed?

•Algorithmic Complexity

•Number of instructions executed

•Considering architecture

• We will focus on the last two – take
cs170 for fast (low complexity)
algorithms

CS61C L40 Writing Fast Code (3) Staley, Spring 2007 © UCB

Minimizing number of instructions
• Know your input: If your input is constrained in

some way, you can often optimize.
• Many algorithms are ideal for large random data

- Often you are dealing with smaller numbers,
or less random ones

- When taken into account, “worse” algorithms
may perform better

• Preprocess if at all possible: If you know some
function will be called often, you may wish to
preprocess

• The fixed costs (preprocessing) are high, but the
lower variable costs (speed of a function often
called) may make up for it.

CS61C L40 Writing Fast Code (4) Staley, Spring 2007 © UCB

Example 1 – bit counting – Basic Idea
• Sometimes you may want to count the
number of bits in a number:

•This is used in encodings
•Also used in interview questions

•Obviously, there is no (sequential)
algorithm which has better
complexity than O(n), with n being
number of bits

•But we can optimize this in some
ways

CS61C L40 Writing Fast Code (5) Staley, Spring 2007 © UCB

Example 1 – bit counting - Basic
• The basic way of counting:
int bitcount_std(uint32_t num){

int cnt = 0;

while (num){

cnt+= (num & 1);

num>>=1;

}

return cnt;

}

We simply test every bit until we are done!

CS61C L40 Writing Fast Code (6) Staley, Spring 2007 © UCB

Example 1 – bit counting – Optimized?
• The “optimized” way of counting:
• Linear in the number of 1’s present

int bitcount_op(uint32_t num){

int cnt = 0;

while (num){

cnt++ ;

num &= (num - 1) ;

}

return cnt;

}
This relies on the fact that
num = (num – 1) & num
changes rightmost 1 bit in num to a 0.

Try it out!

CS61C L40 Writing Fast Code (7) Staley, Spring 2007 © UCB

Example 1 – bit counting – Preprocess
• Preprocessing!

uint8_t tbl[256]; //tbl[i] has number of 1’s in i

inline int bitcount_preprocess(uint32_t num){

int cnt =0;

while (num){

cnt+=tbl[num&0xff];

num>>=8;

}

return cnt;

}

The table could be made smaller or
larger; there is a trade-off between
table size and speed.

Table can be built either A) initially or
B) as it is accessed (like a cache)

CS61C L40 Writing Fast Code (8) Staley, Spring 2007 © UCB

Example 1 – Times
Test: Call bitcount on 20 million random numbers. Compiled

with –O1, run on 2.4 Ghz Intel Core 2 Duo with 1 Gb RAM

Preprocessing improved (13% increase). Optimization was
great for power of two numbers.

With random data, the linear in 1’s optimization actually
hurt speed (subtracting 1 may take more time than
shifting on many x86 processors).

Test Totally Random
number time

Random power
of 2 time

Bitcount_std 830 ms 790 ms

Bitcount_op 860 ms 273 ms
Bitcount_

preprocess
720 ms 700 ms

CS61C L40 Writing Fast Code (9) Staley, Spring 2007 © UCB

Inlining
• A function in C:

int foo(int v){

//code

}

foo(9)

• The same function in assembler:
foo: #push back stack pointer

#save regs

#code

#restore regs

#push forward stack pointer

jr $ra

#elsewhere

jal foo

CS61C L40 Writing Fast Code (10) Staley, Spring 2007 © UCB

Inlining - Etc
• Function calling is quite expensive!

• C provides the inline command.
• Functions that are marked inline (e.g. inline void f)

will have their code inserted into the caller
• Thus, inline functions are somewhat “macros with

structure”.

• With inlining, bitcount-std took 830 ms.

• Without inling, bitcount-std took 1.2s!

• Bad things about inlining;
• Inlined functions generally cannot be recursive.
• Inlining large functions is actually a bad idea. It

increases code size and may hurt cache
performance.

CS61C L40 Writing Fast Code (11) Staley, Spring 2007 © UCB

Along the Same lines - Malloc
• Malloc is a function call – and a slow one at that.
• Often times, you will be allocating memory that is never freed

• Or multiple blocks of memory that will be freed at once.
• Allocating a large block of memory a single time is much faster than multiple calls to malloc.
int *malloc_cur, *malloc_end;

//normal allocation:

malloc_cur = malloc(BLOCKCHUNK*sizeof(int*));

//block allocation – we allocate BLOCKSIZE at a time

malloc_cur += BLOCKSIZE;

if (malloc_cur == malloc_end){

malloc_cur = malloc(BLOCKSIZE*sizeof(int*));

malloc_end = malloc_cur + BLOCKSIZE;

}

Block allocation is 40% faster

(BLOCKSIZE=256; BLOCKCHUNK=16)

CS61C L40 Writing Fast Code (12) Staley, Spring 2007 © UCB

Case Study - Hardware Dependence

• You have two integers arrays A and B.
• You want to make a third array C.
• C consists of all integers that are in both A and B.
• You can assume that no integer is repeated in

either A or B.

A

B

C

CS61C L40 Writing Fast Code (13) Staley, Spring 2007 © UCB

Case Study - Hardware Dependence
• You have two integers arrays A and B.
• You want to make a third array C.
• C consists of all integers that are in both A and B.
• You can assume that no integer is repeated in

either A or B.
• There are two reasonable ways to do this:

• Method 1: Make a hash table.
- Put all elements in A into the hash table.
- Iterate through all elements n in B. If n is present in A, add

it to C.
• Method 2: Sort!

- Quicksort A and B
- Iterate through both as if to merge two sorted lists.
- Whenever A[index_A] and B[index_B] are ever equal, add

A[index_A] to C

CS61C L40 Writing Fast Code (14) Staley, Spring 2007 © UCB

Peer Instruction

A. Method 1 is has lower average
time complexity (Big O) than
Method 2

B. Method 1 is faster for small arrays
C. Method 1 is faster for large arrays

ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF

Method 1: Make a hash table.
• Put all elements in A into the hash table.
• Iterate through all elements n in B. If n is in A,
add it to C.

Method 2: Sort!
• Quicksort A and B
• Iterate through both as if to merge two sorted lists.
• Whenever A[index_A] and B[index_B] are ever equal,

add A[index_A] to C

7: TTT

CS61C L40 Writing Fast Code (15) Staley, Spring 2007 © UCB

Peer Instruction
A. Hash Tables (assuming little collisions) are O(N). Quick sort

averages O(N*log N). Both have worse case time complexity
O(N2).

For B and C, let’s try it out:
Test data is random data injected into arrays equal to SIZE

(duplicate entries filtered out).

Size # matches Hash
Speed

Qsort
speed

200 0 23 ms 10 ms

2 million 1,837 7.7 s 1 s

20 million 184,835 Started
thrashing –
gave up

11 s

So TFF!

CS61C L40 Writing Fast Code (16) Staley, Spring 2007 © UCB

Analysis
• The hash table performs worse and worse as N

increases, even though it has better time
complexity.

• The thrashing occurred when the table occupied
more memory than physical RAM.

• But this doesn’t explain the 2 million case: We will
compare hashing to RADIX sort to analyze it.

• QUICKSORT – O(N*log(N)):
Basically selects “pivot” in an array and
rotates elements about the pivot
Average Complexity: O(n*log(n))

RADIX SORT – O(n):
Advanced bucket sort
Basically “hashes” individual items.

CS61C L40 Writing Fast Code (17) Staley, Spring 2007 © UCB

Complexity holds true for instruction count

0

100

200

300

400

500

600

700

800

1000 10000 100000 100000
0

1E+07

Quick (Instr/key)
Radix (Instr/key)

CS61C L40 Writing Fast Code (18) Staley, Spring 2007 © UCB

Yet CPU time suggests otherwise…

0

100

200

300

400

500

600

700

800

1000 10000 100000 100000
0

1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

CS61C L40 Writing Fast Code (19) Staley, Spring 2007 © UCB

Never forget Cache effects!

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

CS61C L40 Writing Fast Code (20) Staley, Spring 2007 © UCB

Other random tidbits
• Approximation: Often an approximation of a problem you are

trying to solve is good enough – and will run much faster
• For instance, cache and paging LRU algorithm uses an approximation

•Parallelization: Within a few years, all manufactured CPUs will
have at least 4 cores. Use them!

•Test your optimizations. You generally want to time your code
and see if your latest optimization actually has improved
anything.

•Ideally, you want to know the slowest area of your code.
•Don’t over-optimize! There is little reason to spend 3 additional
months on a project to make it run 5% faster. CPU speeds increase
faster than that.

•Instruction Order Matters: There is an instruction cache, so the
common case should have high spatial locality

•GCC’s –O2 tries to do this for you

CS61C L40 Writing Fast Code (21) Staley, Spring 2007 © UCB

“And in conclusion…”

• CACHE, CACHE, CACHE. Its effects can make seemingly
fast algorithms run slower than expected. (For the record,
there are specialized cache efficient hash tables).

• Function Inlining: For small, often called functions, this
will help much.

• Malloc: Try to allocate larger blocks if at all possible,
• Preprocessing and memoizing: Very useful for often

called functions.
• There are other optimizations possible: But be sure to test

before using them!

CS61C L40 Writing Fast Code (22) Staley, Spring 2007 © UCB

Bonus slides

• Source code is provided beyond this
point

• We don’t have time to go over it in
lecture.

CS61C L40 Writing Fast Code (23) Staley, Spring 2007 © UCB

Method 1 Source – in C++
int I = 0, int j =0, int k=0;
int *array1, *array2, *result; //already allocated (array are set)

map<unsigned int, unsigned int> ht; //a hash table

for (int i=0; i<SIZE; i++) { //add array1 to hash table

ht[array1[i]] = 1;

}

for (int i=0; i<SIZE; i++) {

if(ht.find(array2[i]) != ht.end()) { //is array2[i] in ht?

result[k] = ht[array2[i]]; //add to result array

k++;

}

}

CS61C L40 Writing Fast Code (24) Staley, Spring 2007 © UCB

Method 2 Source
int I = 0, int j =0, int k=0;

int *array1, *array2, *result; //already allocated (array are set)
qsort(array1,SIZE,sizeof(int*),comparator);

qsort(array2,SIZE,sizeof(int*),comparator);

//once sort is done, we merge

while (i<SIZE && j<SIZE){

if (array1[i] == array2[j]){ //if equal, add

result[k++] = array1[i] ; //add to results

i++; j++; //increment pointers

}

else if (array1[i] < array2[j]) //move array1

i++;

else //move array2

j++;

}

	Speed
	Minimizing number of instructions
	Example 1 – bit counting – Basic Idea
	Example 1 – bit counting - Basic
	Example 1 – bit counting – Optimized?
	Example 1 – bit counting – Preprocess
	Example 1 – Times
	Inlining
	Inlining - Etc
	Along the Same lines - Malloc
	Case Study - Hardware Dependence
	Case Study - Hardware Dependence
	Peer Instruction
	Peer Instruction
	Analysis
	Complexity holds true for instruction count
	Yet CPU time suggests otherwise…
	Never forget Cache effects!
	Other random tidbits
	“And in conclusion…”
	Bonus slides
	Method 1 Source – in C++
	Method 2 Source

