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Speed

• We like things to run fast

• But what determines speed?

•Algorithmic Complexity

•Number of instructions executed

•Considering architecture

• We will focus on the last two – take 
cs170 for fast (low complexity) 
algorithms



CS61C L40 Writing Fast Code (3) Staley, Spring 2007 © UCB

Minimizing number of instructions
• Know your input: If your input is constrained in 

some way, you can often optimize.
• Many algorithms are ideal for large random data

- Often you are dealing with smaller numbers, 
or less random ones

- When taken into account, “worse” algorithms 
may perform better

• Preprocess if at all possible: If you know some 
function will be called often, you may wish to 
preprocess

• The fixed costs (preprocessing) are high, but the 
lower variable costs (speed of a function often 
called) may make up for it.
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Example 1 – bit counting – Basic Idea
• Sometimes you may want to count the 
number of bits in a number:

•This is used in encodings
•Also used in interview questions

•Obviously, there is no (sequential) 
algorithm which has better 
complexity than O(n), with n being 
number of bits

•But we can optimize this in some 
ways
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Example 1 – bit counting - Basic
• The basic way of counting:
int bitcount_std(uint32_t num){

int cnt = 0;

while (num){

cnt+= (num & 1);

num>>=1;

}

return cnt;

}

We simply test every bit until we are done!
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Example 1 – bit counting – Optimized?
• The “optimized” way of counting:
• Linear in the number of 1’s present

int bitcount_op(uint32_t num){

int cnt = 0;

while (num){      

cnt++ ;

num &= (num - 1) ;

}

return cnt;

}
This relies on the fact that 
num = (num – 1) & num 
changes rightmost 1 bit in num to a 0.

Try it out!
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Example 1 – bit counting – Preprocess
• Preprocessing!

uint8_t tbl[256]; //tbl[i] has number of 1’s in i

inline int bitcount_preprocess(uint32_t num){

int cnt =0;

while (num){

cnt+=tbl[num&0xff];

num>>=8;

}

return cnt;

}

The table could be made smaller or 
larger; there is a trade-off between 
table size and speed.

Table can be built either A) initially or 
B) as it is accessed (like a cache)
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Example 1 – Times
Test: Call bitcount on 20 million random numbers.  Compiled 

with –O1, run on 2.4 Ghz Intel Core 2 Duo with 1 Gb RAM 

Preprocessing improved (13% increase).  Optimization was 
great for power of two numbers.

With random data, the linear in 1’s optimization actually 
hurt speed (subtracting 1 may take more time than 
shifting on many x86 processors).

Test Totally Random 
number time

Random power 
of 2 time

Bitcount_std 830 ms 790 ms

Bitcount_op 860 ms 273 ms
Bitcount_

preprocess
720 ms 700 ms
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Inlining
• A function in C:

int foo(int v){

//code

}

foo(9)

• The same function in assembler:
foo: #push back stack pointer

#save regs

#code

#restore regs

#push forward stack pointer

jr $ra

#elsewhere

jal foo
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Inlining - Etc
• Function calling is quite expensive!

• C provides the inline command.
• Functions that are marked inline (e.g. inline void f) 

will have their code inserted into the caller
• Thus, inline functions are somewhat “macros with 

structure”.

• With inlining, bitcount-std took 830 ms.

• Without inling, bitcount-std took 1.2s!

• Bad things about inlining;
• Inlined functions generally cannot be recursive.
• Inlining large functions is actually a bad idea.  It 

increases code size and may hurt cache 
performance.
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Along the Same lines - Malloc
• Malloc is a function call – and a slow one at that.
• Often times, you will be allocating memory that is never freed

• Or multiple blocks of memory that will be freed at once.
• Allocating a large block of memory a single time is much faster than multiple calls to malloc.
int *malloc_cur, *malloc_end; 

//normal allocation:

malloc_cur = malloc(BLOCKCHUNK*sizeof(int*));

//block allocation – we allocate BLOCKSIZE at a time

malloc_cur += BLOCKSIZE;

if (malloc_cur == malloc_end){

malloc_cur = malloc(BLOCKSIZE*sizeof(int*));

malloc_end = malloc_cur + BLOCKSIZE;

}

Block allocation is 40% faster

(BLOCKSIZE=256; BLOCKCHUNK=16)
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Case Study - Hardware Dependence

• You have two integers arrays A and B.
• You want to make a third array C.
• C consists of all integers that are in both A and B.
• You can assume that no integer is repeated in 

either A or B.

A

B

C
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Case Study - Hardware Dependence
• You have two integers arrays A and B.
• You want to make a third array C.
• C consists of all integers that are in both A and B.
• You can assume that no integer is repeated in 

either A or B.
• There are two reasonable ways to do this:

• Method 1: Make a hash table.  
- Put all elements in A into the hash table. 
- Iterate through all elements n in B.  If n is present in A, add 

it to C.
• Method 2: Sort!

- Quicksort A and B
- Iterate through both as if to merge two sorted lists.
- Whenever A[index_A] and B[index_B] are ever equal, add 

A[index_A] to C
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Peer Instruction

A. Method 1 is has lower average 
time complexity (Big O) than 
Method 2

B. Method 1 is faster for small arrays
C. Method 1 is faster for large arrays

ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF

Method 1: Make a hash table.  
• Put all elements in A into the hash table. 
• Iterate through all elements n in B.  If n is in A, 
add it to C.

Method 2: Sort!
• Quicksort A and B
• Iterate through both as if to merge two sorted lists.
• Whenever A[index_A] and B[index_B] are ever equal, 

add A[index_A] to C

7: TTT
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Peer Instruction
A. Hash Tables (assuming little collisions) are O(N).  Quick sort 

averages O(N*log N). Both have worse case time complexity 
O(N2).  

For B and C, let’s try it out:
Test data is random data injected into arrays equal to SIZE 

(duplicate entries filtered out).  

Size # matches Hash 
Speed

Qsort
speed

200 0 23 ms 10 ms

2 million 1,837 7.7 s 1 s

20 million 184,835 Started 
thrashing –
gave up

11 s

So TFF!
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Analysis
• The hash table performs worse and worse as N 

increases, even though it has better time 
complexity.

• The thrashing occurred when the table occupied 
more memory than physical RAM.

• But this doesn’t explain the 2 million case: We will 
compare hashing to RADIX sort to analyze it.

• QUICKSORT – O(N*log(N)):  
Basically selects “pivot” in an array and 
rotates elements about the pivot
Average Complexity: O(n*log(n))

RADIX SORT – O(n):
Advanced bucket sort
Basically “hashes” individual items.



CS61C L40 Writing Fast Code (17) Staley, Spring 2007 © UCB

Complexity holds true for instruction count
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Yet CPU time suggests otherwise…
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Never forget Cache effects!
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Other random tidbits
• Approximation: Often an approximation of a problem you are 

trying to solve is good enough – and will run much faster
• For instance, cache and paging LRU algorithm uses an approximation

•Parallelization: Within a few years, all manufactured CPUs will 
have at least 4 cores.  Use them!

•Test your optimizations. You generally want to time your code 
and see if your latest optimization actually has improved 
anything.

•Ideally, you want to know the slowest area of your code.
•Don’t over-optimize! There is little reason to spend 3 additional 
months on a project to make it run 5% faster. CPU speeds increase 
faster than that. 

•Instruction Order Matters: There is an instruction cache, so the
common case should have high spatial locality

•GCC’s –O2 tries to do this for you
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“And in conclusion…”

• CACHE, CACHE, CACHE.  Its effects can make seemingly 
fast algorithms run slower than expected.  (For the record, 
there are specialized cache efficient hash tables).

• Function Inlining: For small, often called functions, this 
will help much.

• Malloc: Try to allocate larger blocks if at all possible,
• Preprocessing and memoizing: Very useful for often 

called functions.
• There are other optimizations possible: But be sure to test 

before using them!
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Bonus slides

• Source code is provided beyond this 
point

• We don’t have time to go over it in 
lecture.
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Method 1 Source – in C++
int I = 0, int j =0, int k=0;
int *array1, *array2, *result; //already allocated (array are set)

map<unsigned int, unsigned int> ht; //a hash table

for (int i=0; i<SIZE; i++) {  //add array1 to hash table

ht[array1[i]] = 1;

}

for (int i=0; i<SIZE; i++) {

if(ht.find(array2[i]) != ht.end()) { //is array2[i] in ht?

result[k] = ht[array2[i]];  //add to result array

k++;

}

}
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Method 2 Source
int I = 0, int j =0, int k=0;

int *array1, *array2, *result; //already allocated (array are set)
qsort(array1,SIZE,sizeof(int*),comparator);

qsort(array2,SIZE,sizeof(int*),comparator);

//once sort is done, we merge

while (i<SIZE && j<SIZE){

if (array1[i] == array2[j]){ //if equal, add

result[k++] = array1[i] ; //add to results

i++; j++; //increment pointers

}

else if (array1[i] < array2[j]) //move array1

i++;

else  //move array2

j++;

}
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