
CS61C L42 Software Parallel Computing (1) Matt Johnson, Spring 2007 © UCB

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 42 – Software Parallel Computing

2007-05-02

TA Matt Johnson

inst.eecs.berkeley.edu/~cs61c-tf

PS3 Folding at 600 TFLOPS!
Folding@home distributed computing

Playstation 3 now contributes 2/3rds of total power
Only accounts for 110K of the 2M CPUs in project

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Thanks to Prof. Demmel
for his CS267 slides & Andy Carle for 1st CS61C draft

www.cs.berkeley.edu/~demmel/cs267_Spr05/

CS61C L42 Software Parallel Computing (2) Matt Johnson, Spring 2007 © UCB

Today’s Outline
• Motivation for Parallelism
• Software-Managed Parallelism Idea

• Software vs. hardware parallelism
• Problems SW parallelism can solve
• Fundamental issues

• Programming for computer clusters
• The lower-level model – Message
Passing Interface (MPI)

• Abstractions – MapReduce
• Programming Challenges

CS61C L42 Software Parallel Computing (3) Matt Johnson, Spring 2007 © UCB

Big Problems
• Simulation: the Third Pillar of Science

• Traditionally perform experiments or build
systems

• Limitations to standard approach:
 Too difficult – build large wind tunnels
 Too expensive – build disposable jet
 Too slow – wait for climate or galactic evolution
 Too dangerous – weapons, drug design

• Computational Science:
 Simulate the phenomenon on computers
 Based on physical laws and efficient numerical

methods

• Search engines needs to build an index for
the entire Internet

• Pixar needs to render movies
CS61C L42 Software Parallel Computing (4) Matt Johnson, Spring 2007 © UCB

Performance Requirements
• Performance terminology

• the FLOP: FLoating point OPeration
• Computing power in FLOPS (FLOP per Second)

• Example: Global Climate Modeling
• Divide the world into a grid (e.g. 10 km spacing)
• Solve fluid dynamics equations for each point & minute

 Requires about 100 Flops per grid point per minute
• Weather Prediction (7 days in 24 hours):

 56 Gflops
• Climate Prediction (50 years in 30 days):

 4.8 Tflops

• Perspective
• Pentium 4 3GHz Desktop Processor

 ~6-12 Gflops
 Climate Prediction would take ~50-100 years

www.epm.ornl.gov/chammp/chammp.html

Reference:http://www.hpcwire.com/hpcwire/hpcwireWWW/04/0827/108259.html

CS61C L42 Software Parallel Computing (5) Matt Johnson, Spring 2007 © UCB

What Can We Do?
• Wait for our machines to get faster?

• Moore’s law tells us things are getting better; why not
stall for the moment?

• Moore on last legs!
• Many believe so … thus push for multi-core (Friday)!

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
. 

V
A

X
-1

1
/7

8
0

) 
  

  
  

  
  

  
 

25%/year

52%/year

??%/year

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, October, 2006

CS61C L42 Software Parallel Computing (6) Matt Johnson, Spring 2007 © UCB

Let’s Put Many CPUs Together!
• Distributed computing (SW parallelism)

• Many separate computers (each with
independent CPU, RAM, HD, NIC) that
communicate through a network

• Grids (home computers across Internet) and
Clusters (all in one room)

• Can be “commodity” clusters, 100K+ nodes
• About being able to solve “big” problems,

not “small” problems faster

• Multiprocessing (HW parallelism)
• Multiple processors “all in one box” that

often communicate through shared memory
• Includes multicore (many new CPUs)



CS61C L42 Software Parallel Computing (7) Matt Johnson, Spring 2007 © UCB

The Future of Parallelism

“Parallelism is the biggest challenge since
high level programming languages. It’s the
biggest thing in 50 years because industry is
betting its future that parallel programming
will be useful.”

– David Patterson

CS61C L42 Software Parallel Computing (8) Matt Johnson, Spring 2007 © UCB

Administrivia

• Dan’s OH moved to 3pm Friday
• Performance competition submissions
due May 8th

• No slip days can be used!

• The final is Sat 5/12 12:30-3:30pm
• Review session on Weds 5/9 at 2pm

CS61C L42 Software Parallel Computing (9) Matt Johnson, Spring 2007 © UCB

Distributed Computing Themes

• Let’s network many disparate machines
into one compute cluster

• These could all be the same (easier) or
very different machines (harder)

• Common themes
• “Dispatcher” gives jobs & collects results
• “Workers” (get, process, return) until done

• Examples
• SETI@Home, BOINC, Render farms
• Google clusters running MapReduce

CS61C L42 Software Parallel Computing (10) Matt Johnson, Spring 2007 © UCB

Distributed Computing Challenges
• Communication is fundamental difficulty

• Distributing data, updating shared resource,
communicating results

•  Machines have separate memories, so no usual
inter-process communication – need network

• Introduces inefficiencies: overhead, waiting, etc.

• Need to parallelize algorithms
• Must look at problems from parallel standpoint
• Tightly coupled problems require frequent

communication (more of the slow part!)
• We want to decouple the problem

 Increase data locality
 Balance the workload

CS61C L42 Software Parallel Computing (11) Matt Johnson, Spring 2007 © UCB

Programming Models: What is MPI?
• Message Passing Interface (MPI)

• World’s most popular distributed API
• MPI is “de facto standard” in sci computing
• C and FORTRAN, ver. 2 in 1997
• What is MPI good for?

 Abstracts away common network communications
 Allows lots of control without bookkeeping
 Freedom and flexibility come with complexity

– 300 subroutines, but serious programs with fewer than 10

• Basics:
 One executable run on every node
 Each node process has a rank ID number assigned
 Call API functions to send messages

http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

CS61C L42 Software Parallel Computing (12) Matt Johnson, Spring 2007 © UCB

Basic MPI Functions (1)
• MPI_Send() and MPI_Receive()

• Basic API calls to send and receive data point-
to-point based on rank (the runtime node ID #)

• We don’t have to worry about networking details
• A few are available: blocking and non-blocking

• MPI_Broadcast()
• One-to-many communication of data
• Everyone calls: one sends, others block to

receive

• MPI_Barrier()
• Blocks when called, waits for everyone to call

(arrive at some determined point in the code)
• Synchronization



CS61C L42 Software Parallel Computing (13) Matt Johnson, Spring 2007 © UCB

Basic MPI Functions (2)

• MPI_Scatter()
• Partitions an array that exists on a single node
• Distributes partitions to other nodes in rank order

• MPI_Gather()
• Collects array pieces back to single node (in order)

CS61C L42 Software Parallel Computing (14) Matt Johnson, Spring 2007 © UCB

Basic MPI Functions (3)
• MPI_Reduce()

• Perform a “reduction operation” across
nodes to yield a value on a single node

• Similar to accumulate in Scheme
 (accumulate + ‘(1 2 3 4 5))

• MPI can be clever about the reduction
• Pre-defined reduction operations, or make
your own (and abstract datatypes)
 MPI_Op_create()

•MPI_AllToAll()
• Update shared data resource

CS61C L42 Software Parallel Computing (15) Matt Johnson, Spring 2007 © UCB

MPI Program Template
• Communicators - set up node groups
• Startup/Shutdown Functions

• Set up rank and size, pass argc and argv

• “Real” code segment
main(int argc, char *argv[]){
MPI_Init (&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
/* Data distribution */ ...
/* Computation & Communication*/ ...
/* Result gathering */ ...
MPI_Finalize();
}

CS61C L42 Software Parallel Computing (16) Matt Johnson, Spring 2007 © UCB

Challenges with MPI
• Deadlock is possible…

• Seen in CS61A  – state of no progress
• Blocking communication can cause deadlock

  "crossed" calls when trading information
 example:

– Proc1: MPI_Receive(Proc2, A);  MPI_Send(Proc2, B);
– Proc2: MPI_Receive(Proc1, B);  MPI_Send(Proc1, A);

 There are some solutions - MPI_SendRecv()

• Large overhead from comm. mismanagement
• Time spent blocking is wasted cycles
• Can overlap computation with non-blocking comm.

• Load imbalance is possible…
• Things are starting to look hard to code!

CS61C L42 Software Parallel Computing (17) Matt Johnson, Spring 2007 © UCB

A New Hope: Google’s MapReduce
• Remember CS61A?

(reduce + (map square '(1 2 3)) ⇒
(reduce + '(1 4 9)) ⇒
14

• We told you “the beauty of pure functional programming is that
it’s easily parallelizable”

• Do you see how you could parallelize this?
• What if the reduce function argument were associative, would that

help?

• Imagine 10,000 machines ready to help you compute anything
you could cast as a MapReduce problem!

• This is the abstraction Google is famous for authoring
(but their reduce not the same as the CS61A’s or MPI’s reduce)

 Builds a reverse-lookup table
• It hides LOTS of difficulty of writing parallel code!
• The system takes care of load balancing, dead machines, etc.

CS61C L42 Software Parallel Computing (18) Matt Johnson, Spring 2007 © UCB

MapReduce Programming Model
Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value) 
    list(out_key, intermediate_value)

• Processes input key/value pair
• Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) 
       list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of merged output values (usu just one)

code.google.com/edu/parallel/mapreduce-tutorial.html



CS61C L42 Software Parallel Computing (19) Matt Johnson, Spring 2007 © UCB

MapReduce Code Example
map(String input_key,
    String input_value):
    // input_key  : document name
    // input_value: document contents
    for each word w in input_value:
        EmitIntermediate(w, "1");

reduce(String output_key,
       Iterator intermediate_values):
    // output_key   : a word
    // output_values: a list of counts
    int result = 0;
    for each v in intermediate_values:
        result += ParseInt(v);
    Emit(AsString(result));

• “Mapper” nodes are responsible for the map function
• “Reducer” nodes are responsible for the reduce function
• Data on a distributed file system (DFS)

CS61C L42 Software Parallel Computing (20) Matt Johnson, Spring 2007 © UCB

MapReduce Example Diagram

ah ah er ah if or or uh or ah if

ah:1,1,1,1

ah:1 if:1 or:1 or:1 uh:1 or:1 ah:1 if:1

er:1 if:1,1or:1,1,1 uh:1

ah:1 ah:1 er:1

4 1 2 3 1

file1 file2 file3 file4 file5 file6 file7

(ah) (er) (if) (or) (uh)

map(String input_key,
    String input_value):    
    // input_key  : doc name    
    // input_value: doc contents    
    for each word w in input_value:
        EmitIntermediate(w, "1");

reduce(String output_key, 
       Iterator intermediate_values):
    // output_key   : a word
    // output_values: a list of counts
    int result = 0;
    for each v in intermediate_values:
        result += ParseInt(v);
    Emit(AsString(result));

CS61C L42 Software Parallel Computing (21) Matt Johnson, Spring 2007 © UCB

MapReduce Advantages/Disadvantages
• Now it’s easy to program for many CPUs

• Communication management effectively gone
 I/O scheduling done for us

• Fault tolerance, monitoring
 machine failures, suddenly-slow machines, other

issues are handled

• Can be much easier to design and program!

• But… it further restricts solvable problems
• Might be hard to express some problems in a

MapReduce framework
• Data parallelism is key

 Need to be able to break up a problem by data chunks
• MapReduce is closed-source – Hadoop!

CS61C L42 Software Parallel Computing (22) Matt Johnson, Spring 2007 © UCB

Things to Worry About: Parallelizing Code
• Applications can almost never be completely parallelized; some

serial code remains

• s is serial fraction of program, P is # of processors
• Amdahl’s law:
Speedup(P) = Time(1) / Time(P)
                     ≤ 1 / ( s + ((1-s) / P) ), and as P  ∞
                     ≤ 1/s
• Even if the parallel portion of your application speeds up perfectly,

your performance may be limited by the sequential portion

CS61C L42 Software Parallel Computing (23) Matt Johnson, Spring 2007 © UCB

But… What About Overhead?

• Amdahl’s law ignores overhead
• E.g. from communication, synchronization

• Amdahl’s is useful for bounding a
program’s speedup, but cannot predict
speedup

CS61C L42 Software Parallel Computing (24) Matt Johnson, Spring 2007 © UCB

Summary
• Parallelism is necessary

• It looks like the future of computing…
• It is unlikely that serial computing will
ever catch up with parallel computing

• Software parallelism
• Grids and clusters, networked computers
• Two common ways to program:

 Message Passing Interface (lower level)
 MapReduce (higher level, more constrained)

• Parallelism is often difficult
• Speedup is limited by serial portion of
code and communication overhead



CS61C L42 Software Parallel Computing (25) Matt Johnson, Spring 2007 © UCB

To Learn More…

• About MPI…
• www.mpi-forum.org
• Parallel Programming in C with MPI and
OpenMP by Michael J. Quinn

• About MapReduce…
• code.google.com/edu/parallel/mapreduce
-tutorial.html

• labs.google.com/papers/mapreduce.html
• lucene.apache.org/hadoop/index.html

• Try the lab, and come talk to me!
CS61C L42 Software Parallel Computing (26) Matt Johnson, Spring 2007 © UCB

Bonus slides

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

• The slides will appear in the order they
would have in the normal presentation

CS61C L42 Software Parallel Computing (27) Matt Johnson, Spring 2007 © UCB

How Do I Experiment w/  SW Parallelism?
1. Work for Google. ;-)
2. Use open source MapReduce and VMWare

• Hadoop: map/reduce & distributed file system:
lucene.apache.org/hadoop/

• Nutch: crawler, parsers, index :
lucene.apache.org/nutch/

• Lucene Java: text search engine library:
lucene.apache.org/java/docs/

3. Wait until tomorrow!!! (lab)
• Google is donating a cluster for instruction!

 Will be built for Fall 2007
• We’re developing MapReduce bindings for

Scheme for CS61A
• New MPI lab for CS61C
• It will be available to students & researchers

CS61C L42 Software Parallel Computing (28) Matt Johnson, Spring 2007 © UCB

Example Applications
• Science

• Global climate modeling
• Biology: genomics; protein folding; drug design; malaria simulations
• Astrophysical modeling
• Computational Chemistry, Material Sciences and Nanosciences
• SETI@Home : Search for Extra-Terrestrial Intelligence

• Engineering
• Semiconductor design
• Earthquake and structural modeling
• Fluid dynamics (airplane design)
• Combustion (engine design)
• Crash simulation
• Computational Game Theory (e.g., Chess Databases)

• Business
• Rendering computer graphic imagery (CGI), ala Pixar and ILM
• Financial and economic modeling
• Transaction processing, web services and search engines

• Defense
• Nuclear weapons -- test by simulations
• Cryptography


