inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures

Lecture 44 – Summary & Goodbye

2007-05-07

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Simple multicore API \Rightarrow

MIT researchers say they

have discovered a simple way to do parallel programming: Streamlt, based on data flow.

A smart compiler splits across cores.

technologyreview.com/Infotech/17682/ technologyreview.com/Infotech/18597/ S61C L44 Summary & Goodbye (1)

add	splitjoin (
	<pre>split roundrobin(N?B, V);</pre>
	add pipeline {
	add ZigZag(B);
	add IQuantization(B) to QE:
	add IDCT(B);
	add Saturation(B);
	}
	add pipeline {
	add MotionVectorDecode();
	add Repeat(V, N);
	1
	join roundrobin(B, V);
4	
add	splitjoin (
and a second	split roundrobin(42(B+V), B+V,
B+V	

Cool Stuff...the videos before lecture

SIGGRAPH Electronic Theatre

www.siggraph.org/publications/video-review/SVR.html

\$40/video for ACM Members

SIGGRAPH Conference in San Diego!

•2007-08-05 ⇒ 2007-08-09 www.siggraph.org/s2007/

CS61C L44 Summary & Goodbye (2)

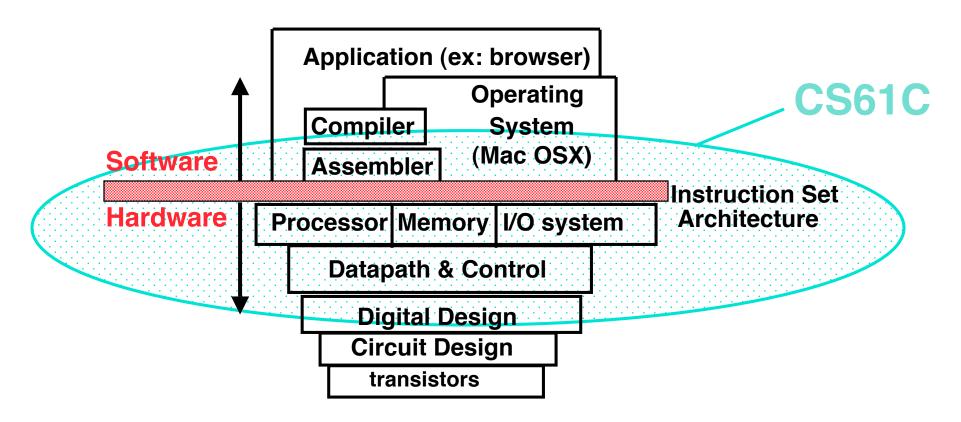
Review

Parallelism

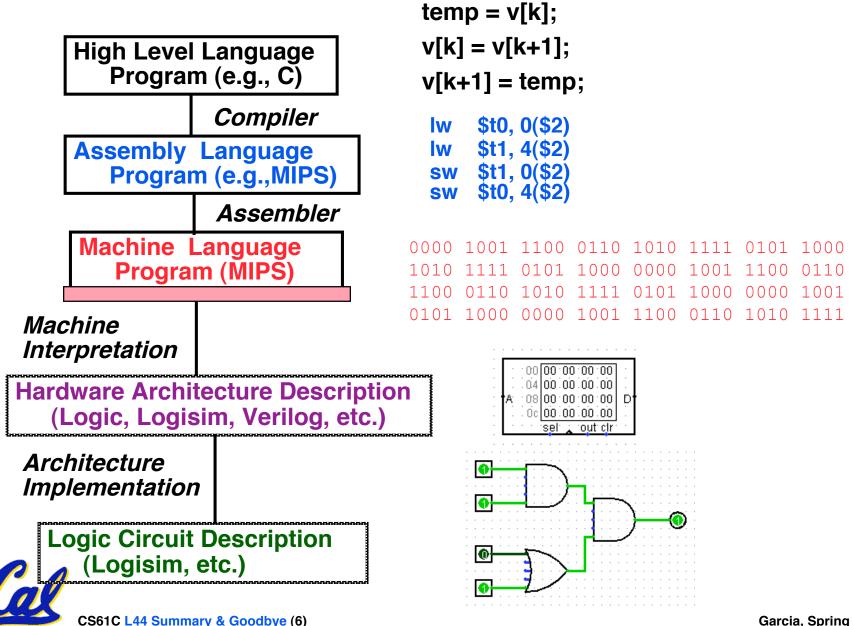
- Above the line (software, many machines) and below the line (hardware, multiple cores) both critical for computing's future.
- Hard to write code that fully takes advantage of all available resources to maximize performance and get fully Nx speedup.
- Distributed and Parallel computing
 - Synchronization hard, APIs help (MapReduce)
- Hardware Parallelism
 - Cache coherence makes it difficult to scale!
 - Manycore, not <u>multicore</u>!

 Berkeley EECS taking initative to make ~1000 core HW, put in researchers hands!

CS61C: So what's in it for me? (1st lecture)


Learn some of the big ideas in CS & engineering:

- 5 Classic components of a Computer
- Principle of abstraction, systems built as layers
- Data can be anything (integers, floating point, characters): a program determines what it is
- Stored program concept: instructions just data
- Compilation v. interpretation thru system layers
- Principle of Locality, exploited via a memory hierarchy (cache)
- Greater performance by exploiting parallelism (pipelining, superscaler, MPI, Map-reduce)


What are "Machine Structures"?

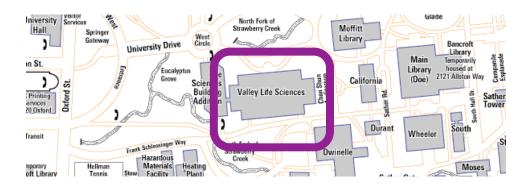
Coordination of many *levels (layers) of <u>abstraction</u>*

61C Levels of Representation

20th vs. 21st Century IT Targets

- 20th Century Measure of Success
 - Performance (peak vs. delivered)
 - Cost (purchase cost vs. ownership cost, power)
- 21st Century Measure of Success? "SPUR"
 - Security
 - Privacy
 - Usability
 - Reliability
- Massive parallelism greater chance (this time) if
 - Measure of success is SPUR vs. only cost-perf
 - Uniprocessor performance improvement decelerates

Other Implications


- Need to revisit chronic unsolved problem
 - Parallel programming!!
- Implications for applications:
 - Computing power >>> CDC6600, Cray XMP (choose your favorite) on an economical die inside your watch, cell phone or PDA
 - On your body health monitoring
 - Google + library of congress on your PDA
- As devices continue to shrink...
 - The need for great HCI critical as ever!

Upcoming Calendar

Week #	Mon	Tues	Wed	Sat
#16 This week	LAST CLASS Summary, Review, & HKN Evals	11:59pm Perf comp due today	2pm Review 10 Evans	FINAL EXAM 12:30pm- 3:30pm 2050 VLSB

Final Exam <u>Only</u> bring pen{,cil}s, two 8.5"x11" <u>handwritten</u> sheets + green. Leave backpacks, books, calculators, cells & pagers home! Everyone must take ALL of the final!

Administrivia: Become active!

- If you did well in CS3 or 61{A,B,C}
 (A- or above) and want to be on staff?
 - Usual path: Lab assistant \Rightarrow Reader \Rightarrow TA
 - Contact Jenny Jones in 395 Soda before first week of semester for LA signup...
 - Reader/TA forms: www.cs/~juliea/
 - I (Dan) strongly encourage anyone who gets an A- or above in the class to follow this path...
 - I'll be teaching CS61C in 2008Sp

Taking advantage of Cal Opportunities

"The Godfather answers all of life's questions" – Heard in "You've got Mail"

- Why are we the #2 Univ in the WORLD?
 - So says the 2004 ranking from the "Times Higher Education Supplement" Research, research, research!
 - Whether you want to go to grad school or industry, you need someone to vouch for you! (as is the case with the Mob)
- Techniques
 - Find out what you like, do lots of web research (read published papers), hit OH of Prof, show enthusiasm & initiative

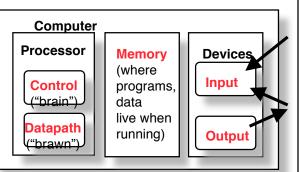
CS98/198 Opportunities Fall 2007

• GamesCrafters (Game Theory R & D)

- Develop SW, analysis on 2-person games of no chance. (e.g., go, chess, connect-4, nim, etc.)
- Req: A- in CS61C, Game Theory / SW Interest
- Taught as a DeCal by GamesCrafters veterans
- MS-DOS X (Mac Student Developers)
 - Learn to program Macintoshes.
 - Req: Interest. Owning a mac helps, not required.
 - Taught as a DeCal by MS-DOS X veterans

• UCBUGG (Recreational Graphics)

- Develop computer-generated images, animations.
- Req: 3D experience, portfolio
- Taught as a DeCal by UCBUGG veterans



Strong or Weak AI? Strong AI: Machines that act intelligently have real, conscious minds...sentience Weak AI: Machines can be made to act as if they were intelligent.

In the future, what'll be the most important computer component?

~

CS61C L44 Summary & Goodbye (13)

Strong AI Control 1 • Datapath 2: Memory 3: Input 4: 5: Output Weak AI 6: Control 7: Datapath

- 8: Memory
- 9: Input
- 0: Output

Peer Instruction Answer

"Forget cloning. Forget TVs on your wrist watch. The biggest invention of the next 100 years will be the ability to directly connect your brain to a machine." – Dan Garcia

- A macaque monkey at Duke University can already control a robotic arm with thought.
- DARPA is extremely interested in the technology for mind-control robots & flying
- Virtual Reality could be achieved with proper I/O interfacing...

www.popsci.com/popsci/medicine/article/0,12543,576464,00.html

CS61C L44 Summary & Goodbye (14)

Penultimate slide: Thanks to the staff!

- •TAs
 - Head TA Michael Le
 - Alex Kronrod
 - Matt Johnson
 - David Poll
 - Aaron Staley
 - Valerie Ishida
 - Brian Nguyen

- Readers
 - Szehon Ho
 - Tim Wu
 - Keaton Mowery
 - Yang Xia
- TAs-in-Training
 - Pamela Lee
 - Alexander Zorbach
 - Omar Akkawi
 - Ofer Sadgat

Thanks to all the former CS61C instructors who have added to these notes...

CS61C L44 Summary & Goodbye (15)

The Future for Future Cal Alumni

- What's The Future?
- New Millennium
 - Wireless, Nanotechnology, Quantum Computing, 10 M "volunteer" CPUs, the Parallel revolution...
 - Rapid Changes in Technology
 - World's Best Education
 - Never Give Up!

"The best way to predict the future is to invent it" – Alan Kay

