In the next 4 yrs, time-lapse movies will show the construction of the new CITRIS building. High Def!!

www.cs.berkeley.edu/~ddgarcia/tl/
“I stand on the shoulders of giants…”

Thanks to these talented folks (& many others) whose contributions have helped make CS61C a really tremendous course!
Where does CS61C fit in?

http://hkn.eecs.berkeley.edu/student/cs-prereq-chart1.gif

CS61B No longer a prereq!
Are Computers Smart?

• To a programmer:
 • Very complex operations / functions:
 - `(map (lambda (x) (* x x)) '(1 2 3 4))`
 • Automatic memory management:
 - `List l = new List;`
 • “Basic” structures:
 - Integers, floats, characters, plus, minus, print commands

Computers are smart!
Are Computers Smart?

• In real life at the lowest level:
 • Only a handful of operations:
 - \{\text{and, or, not}\}
 • \textbf{No} automatic memory management.
 • Only 2 values:
 - \{0, 1\} or \{low, high\} or \{off, on\}

Computers are dumb!
What are “Machine Structures”?

Coordination of many levels (layers) of abstraction
61C Levels of Representation

High Level Language Program (e.g., C)

Assembly Language Program (e.g., MIPS)

Compiler

Assembler

Machine Language Program (MIPS)

Machine Interpretation

Hardware Architecture Description (e.g., block diagrams)

Architecture Implementation

Logic Circuit Description (Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111
Anatomy: 5 components of any Computer

- **Computer**
 - Processor
 - Control ("brain")
 - Datapath ("brawn")
 - Memory
 - (where programs, data live when running)
 - Devices
 - Input
 - Output

Key Devices:
- Keyboard, Mouse
- Disk (where programs, data live when not running)
- Display, Printer
Overview of Physical Implementations

The hardware out of which we make systems.

• Integrated Circuits (ICs)
 • Combinational logic circuits, memory elements, analog interfaces.

• Printed Circuits (PC) boards
 • Substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.

• Power Supplies
 • Converts line AC voltage to regulated DC low voltage levels.

• Chassis (rack, card case, ...)
 • Holds boards, power supply, provides physical interface to user or other systems.

• Connectors and Cables.
Integrated Circuits (2007 state-of-the-art)

- Primarily Crystalline Silicon
- 1mm - 25mm on a side
- 2007 feature size ~ 65 nm = 65 \times 10^{-9} \text{m} (then 45, 32, 22, and 16 [by yr 2013])
- 100 - 1000M transistors
- (25 - 100M “logic gates”)
- 3 - 10 conductive layers
- “CMOS” (complementary metal oxide semiconductor) - most common.

- Package provides:
 - spreading of chip-level signal paths to board-level
 - heat dissipation.
- Ceramic or plastic with gold wires.
Printed Circuit Boards

- fiberglass or ceramic
- 1-20 conductive layers
- 1-20 in on a side
- IC packages are soldered down.

Provides:
- Mechanical support
- Distribution of power and heat.
Technology Trends:
Microprocessor Complexity

Number of transistors doubling every 18 months.
Number of transistors doubling every 24 months.

Year # of transistors on an IC

1971 4004
1980 8080
1990 8066
2000 Itanium 2
2004 Itanium 2 [9 MB cache]

Gordon Moore
Intel Cofounder
B.S. Cal 1950!

2X Transistors / Chip
Every 1.5 years

Called "Moore’s Law"
Technology Trends: Memory Capacity
(Single-Chip DRAM)

• Now 1.4X/yr, or 2X every 2 years.
• 8000X since 1980!
Technology Trends: Uniprocessor Performance (SPECint)

- VAX: 1.25x/year 1978 to 1986
- RISC + x86: 1.52x/year 1986 to 2002
- RISC + x86: 1.20x/year 2002 to present
Computer Technology - Dramatic Change!

• Memory
 • DRAM capacity: 2x / 2 years (since ‘96); 64x size improvement in last decade.

• Processor
 • Speed 2x / 1.5 years (since ‘85); [slowing!] 100X performance in last decade.

• Disk
 • Capacity: 2x / 1 year (since ‘97) 250X size in last decade.
Computer Technology - Dramatic Change!

You just learned the difference between (Kilo, Mega, ...) and (Kibi, Mebi, ...)!

• State-of-the-art PC when you graduate: (at least…)
 • Processor clock speed: 4,000 MegaHertz (4.0 GigaHertz)
 • Memory capacity: 65,536 MebiBytes (64.0 GibiBytes)
 • Disk capacity: 2,000 GigaBytes (2.0 TeraBytes)
 • New units! Mega ⇒ Giga, Giga ⇒ Tera

(Tera ⇒ Peta, Peta ⇒ Exa, Exa ⇒ Zetta
Zetta ⇒ Yotta = 10^{24})
CS61C: So, what’s in it for me?

• Learn some of the big ideas in CS & Engineering:
 • Principle of abstraction
 - Used to build systems as layers
 • 5 Classic components of a Computer
 • Data can be anything
 - Integers, floating point, characters, ...
 - A program determines what it is
 - Stored program concept: instructions just data
 • Principle of Locality
 - Exploited via a memory hierarchy (cache)
 • Greater performance by exploiting parallelism
 • Compilation v. interpretation through system layers
 • Principles / Pitfalls of Performance Measurement
Others Skills learned in 61C

• Learning C
 • If you know one, you should be able to learn another programming language largely on your own
 • If you know C++ or Java, it should be easy to pick up their ancestor, C

• Assembly Language Programming
 • This is a skill you will pick up, as a side effect of understanding the Big Ideas

• Hardware design
 • We’ll learn just the basics of hardware design
 • CS 150, 152 teach this in more detail
Yoda says…

“Always in motion is the future…”

Our schedule may change slightly depending on some factors. This includes lectures, assignments & labs…
What is this?

Attention over time!
What is this?!

Attention over time!

~5 min
Tried-and-True Technique: Peer Instruction

• Increase real-time learning in lecture, test understanding of concepts vs. details

• As complete a “segment” ask multiple choice question
 • 1-2 minutes to decide yourself
 • 3 minutes in pairs/triples to reach consensus. Teach others!
 • 5-7 minute discussion of answers, questions, clarifications

• You’ll get transmitters from ASUC bookstore (or Neds) (hopefully they’re in!)
Extra Credit: EPA!

- **Effort**
 - Attending Dan’s and TA’s office hours, completing all assignments, turning in HW0, doing reading quizzes

- **Participation**
 - Attending lecture and voting using the PRS system
 - Asking great questions in discussion and lecture and making it more interactive

- **Altruism**
 - Helping others in lab or on the newsgroup

- **EPA! extra credit points have the potential to bump students up to the next grade level!** (but actual EPA! scores are internal)
Course Problems...Cheating

• What is cheating?
 • Studying together in groups is encouraged.
 • Turned-in work must be completely your own.
 • Common examples of cheating: running out of time on a assignment and then pick up output, take homework from box and copy, person asks to borrow solution “just to take a look”, copying an exam question, ...
 • You’re not allowed to work on homework/projects/exams with anyone (other than ask Qs walking out of lecture)
 • Both “giver” and “receiver” are equally culpable

• Cheating points: 0 EPA, negative points for that assignment / project / exam (e.g., if it’s worth 10 pts, you get -10) In most cases, F in the course.

• Every offense will be referred to the Office of Student Judicial Affairs.

 www.eecs.berkeley.edu/Policies/acad.dis.shtml
My goal as an instructor

• To make your experience in CS61C as enjoyable & informative as possible
 • Humor, enthusiasm, graphics & technology-in-the-news in lecture
 • Fun, challenging projects & HW
 • Pro-student policies (exam clobbering)

• To maintain Cal & EECS standards of excellence
 • Your projects & exams will be just as rigorous as every year. Overall: B- avg

• To be an HKN “7.0” man
 • I know I speak fast when I get excited about material. I’m told every semester. Help me slow down when I go toooo fast.
 • Please give me feedback so I improve! Why am I not 7.0 for you? I will listen!!
Teaching Assistants

• David Jacobs (also Head TA)
• Omar Akkawi
• Matt Johnson
• Keaton Mowery
• Casey Rodarmor
• Ben Sussman
• Brian Zimmer
Summary

• Continued rapid improvement in computing
 • 2X every 2.0 years in memory size;
 every 1.5 years in processor speed;
 every 1.0 year in disk capacity;
 • Moore’s Law enables processor
 (2X transistors/chip ~1.5-2 yrs)

• 5 classic components of all computers
 Control Datapath Memory Input Output

Processor
Reference slides

You ARE responsible for the material on these slides (they’re just taken from the reading anyway) ; we’ve moved them to the end and off-stage to give more breathing room to lecture!
Course Lecture Outline

• Basics
 • C-Language, Pointers
 • Memory management

• Machine Representations
 • Numbers (integers, reals)
 • Assembly Programming
 • Compilation, Assembly

• Processors & Hardware
 • Logic Circuit Design
 • CPU organization
 • Pipelining

• Memory Organization
 • Caches
 • Virtual Memory

• I / O
 • Interrupts
 • Disks, Networks

• Advanced Topics
 • Performance
 • Virtualization
 • Parallel Programming
Homeworks, Labs and Projects

• **Lab exercises** (every wk; due in that lab session unless extension given by TA) – extra point if you finish in 1st hour!

• **Homework exercises** (~ every week; (HW 0) out now, due in section *next week*)

• **Projects** (every 2 to 3 weeks)

• All exercises, reading, homeworks, projects on course web page

• We will DROP your lowest HW, Lab!

• **Only one {HW, Project, Midterm} / week**
2 Course Exams

- **Midterm:** Monday 2008-03-10 @ 7-10pm
 - Give 3 hours for 2 hour exam
 - One “review sheet” allowed
 - Review session Sun beforehand, time/place TBA
- **Final:** Mon 2008-05-19 @ 5-8pm (group 12)
 - You can *clobber* your midterm grade!
 - (students always LOVE this…)

![Chart showing midterm clobber results]

UCB CS61C 2006Fa Midterm Clobber
(Final midterm coverage - actual midterm)
Your final grade

• Grading (could change before 1st midterm)
 • 15pts = 5% Labs
 • 30pts = 10% Homework
 • 60pts = 20% Projects
 • 75pts = 25% Midterm* [can be clobbered by Final]
 • 120pts = 40% Final
 • Extra credit for EPA. What’s EPA?

• Grade distributions
 • Similar to CS61[AB], in the absolute scale.
 • Perfect score is 300 points. 10-20-10 for A+, A, A-
 • Similar for Bs and Cs (40 pts per letter-grade) ... C+, C, C-, D, F (No D+ or D- distinction)
 • Differs: No F will be given if all-but-one {hw, lab}, all projects submitted and all exams taken
 • We’ll “ooch” grades up but never down
Texts

• Required: *Computer Organization and Design: The Hardware/Software Interface, Third Edition*, Patterson and Hennessy (COD). *The second edition is far inferior, and is not suggested.*

• Required: *The C Programming Language*, Kernighan and Ritchie (K&R), 2nd edition

• Reading assignments on web page
Peer Instruction and Just-in-time-learning

• Read textbook
 • Reduces examples have to do in class
 • Get more from lecture (also good advice)

• Fill out 3-question Web Form on reading (released mondays, due every friday before lecture)
 • Graded for effort, not correctness…
 • This counts toward “E”ffort in EPA score