Long-Distance Wi-Fi ➞

The difficulty of providing WiFi to remote municipalities may soon be over. Intel has figured out how to deliver signals at a low cost > 60 miles away. Since “you can’t lay cable”
Review

- Use this table and techniques we learned to transform from 1 to another
Today

• Data Multiplexors
• Arithmetic and Logic Unit
• Adder/Subtractor
Data Multiplexor (here 2-to-1, n-bit-wide)
N instances of 1-bit-wide mux

How many rows in TT?

\[c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab \]

\[= \overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab) \]

\[= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b) \]

\[= \overline{s}(a(1) + s((1)b) \]

\[= \overline{s}a + sb \]
How do we build a 1-bit-wide mux?

\[
\overline{s}a + sb
\]
4-to-1 Multiplexor?

How many rows in TT?

\[
e = \overline{s_1 s_0} a + \overline{s_1 s_0} b + s_1 \overline{s_0} c + s_1 s_0 d
\]
Is there any other way to do it?

Hint: NCAA tourney!

Ans: Hierarchically!
Adminstrivia

• Homework 5 due Friday (not tonight)
• All-hands EECS Faculty mini-retreat on Friday
 • TA will cover
Arithmetic and Logic Unit

- Most processors contain a special logic block called “Arithmetic and Logic Unit” (ALU)

- We’ll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

 \[
 \begin{align*}
 \text{when } S=00, & \quad R = A + B \\
 \text{when } S=01, & \quad R = A - B \\
 \text{when } S=10, & \quad R = A \text{ AND } B \\
 \text{when } S=11, & \quad R = A \text{ OR } B
 \end{align*}
 \]
Our simple ALU
Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we’ve seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer
Adder/Subtracter – One-bit adder LSB…

\[
\begin{array}{ccc}
 a_3 & a_2 & a_1 \\
 + & b_3 & b_2 & b_1 \\
 \hline
 s_3 & s_2 & s_1 \\
\end{array}
\]

\[
\begin{array}{rr|rr}
 a_0 & b_0 & s_0 & c_1 \\
 \hline
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 1 \\
\end{array}
\]

\[
\begin{align*}
 s_0 &= \\
 c_1 &=
\end{align*}
\]
Adder/Subtractor – One-bit adder (1/2)...

\[
\begin{array}{cccc}
\text{a}_3 & \text{a}_2 & \text{a}_1 & \text{a}_0 \\
\text{b}_3 & \text{b}_2 & \text{b}_1 & \text{b}_0 \\
\hline
\text{s}_3 & \text{s}_2 & \text{s}_1 & \text{s}_0 \\
\end{array}
\]

\[
\begin{array}{cccc|cc}
\text{a}_i & \text{b}_i & \text{c}_i & \text{s}_i & \text{c}_{i+1} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Adder/Subtractor – One-bit adder (2/2)...

\[s_i = \text{XOR}(a_i, b_i, c_i) \]

\[c_{i+1} = \text{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i \]
N 1-bit adders \Rightarrow 1 N-bit adder

What about overflow? Overflow = c_n?
What about overflow?

• Consider a 2-bit signed # & overflow:
 • $10 = -2 + -2$ or -1
 • $11 = -1 + -2$ only
 • $00 = 0$ NOTHING!
 • $01 = 1 + 1$ only

• Highest adder
 • $C_1 = \text{Carry-in} = C_{in}$, $C_2 = \text{Carry-out} = C_{out}$
 • No C_{out} or $C_{in} \Rightarrow$ NO overflow!
 • C_{in}, and $C_{out} \Rightarrow$ NO overflow!

What op?
 • C_{in}, but no $C_{out} \Rightarrow$ A,B both > 0, overflow!
 • C_{out}, but no $C_{in} \Rightarrow$ A,B both < 0, overflow!
What about overflow?

• Consider a 2-bit signed # & overflow:

10 = -2
11 = -1
00 = 0
01 = 1

• Overflows when…

• \(C_{\text{in}}\), but no \(C_{\text{out}}\) \(\Rightarrow\) A,B both > 0, overflow!
• \(C_{\text{out}}\), but no \(C_{\text{in}}\) \(\Rightarrow\) A,B both < 0, overflow!

\[
\text{overflow} = C_n \ XOR \ C_{n-1}
\]
Extremely Clever Subtractor

\[b_{n-1} \quad a_{n-1} \]

\[b_1 \quad a_1 \quad b_0 \quad a_0 \]

\[C_n \quad C_{n-1} \quad C_2 \quad C_1 \quad C_0 \]

\[S_{n-1} \quad S_1 \quad S_0 \]

overflow
A. Truth table for mux with 4-bits of signals has 2^4 rows

B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit adder delay would also be T
Peer Instruction Answer
“And In conclusion…”

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S

- Can implement muxes hierarchically

- ALU can be implemented using a mux
 - Coupled with basic block elements

- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
 - XOR serves as conditional inverter