The ST506 was their first drive in 1979 (shown here), weighed 5 lbs, cost $1,500 and held 5 MeB. Today’s drives hold 1 TB, and are available for less than $200.

1b.seagatestorage.com
Magnetic Disk – common I/O device

Computer

- Processor (active)
- Control ("brain")
- Datapath ("brawn")

Memory (passive) (where programs, data live when running)

Devices

- Input
- Output

Keyboards, Mouse
Disk, Network
Display, Printer
Magnetic Disk – common I/O device

- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - similar to tape recorder except digital rather than analog data

- Nonvolatile storage
 - retains its value without applying power to disk.

- Two Types
 - Floppy disks – slower, less dense, removable.
 - Hard Disk Drives (HDD) – faster, more dense, non-removable.

- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive storage for files
 - “Backup” for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)
Photo of Disk Head, Arm, Actuator

- Spindle
- Arm
- Actuator
- Head
- Platters (1-12)
Several platters, with information recorded magnetically on both surfaces (usually)

Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)

Actuator moves head (end of arm) over track (“seek”), wait for sector rotate under head, then read or write
- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request
Disk Device Performance (2/2)

- Average distance of sector from head?
- 1/2 time of a rotation
 - 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - 1 revolution = 1/120 sec ⇒ 8.33 milliseconds
 - 1/2 rotation (revolution) ⇒ 4.17 ms
- Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random
- Size of Disk cache can strongly affect perf!
 - Cache built into disk system, OS knows nothing
Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same number of sectors per track
 - Since outer track longer, lower bits per inch
- Competition \Rightarrow decided to keep bits per inch (BPI) high for all tracks ("constant bit density")
 - \Rightarrow More capacity per disk
 - \Rightarrow More sectors per track towards edge
 - \Rightarrow Since disk spins at constant speed, outer tracks have faster data rate
- **Bandwidth outer track 1.7x inner track!**
Disk Performance Model / Trends

- **Capacity**: + 100% / year (2X / 1.0 yrs)
 - Over time, grown so fast that # of platters has reduced (some even use only 1 now!)

- **Transfer rate (BW)**: + 40%/yr (2X / 2 yrs)

- **Rotation+Seek time**: − 8%/yr (1/2 in 10 yrs)

- **Areal Density**
 - Bits recorded along a track: Bits/Inch (BPI)
 - # of tracks per surface: Tracks/Inch (TPI)
 - We care about bit density per unit area: Bits/Inch²
 - Called Areal Density = BPI x TPI
 - “~120 Gb/ln² is longitudinal limit”
 - “230 Gb/ln² now with perpendicular”

- **GB/$**: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density
State of the Art: Two camps (2008)

Performance
- Enterprise apps, servers
- **E.g., Seagate Cheetah 15K.6**
 - 3 Gb/s, Serial Attached SCSI, Fibre Channel
 - 450 GB, 3.5-inch disk
 - 4 disks, 8 heads
 - 15,000 RPM
 - 12-17 watts (idle-normal)
 - 3.4 ms avg. seek
 - 164 MB/s transfer rate
 - 1.6 Million Hrs MTBF
 - 5 year warrantee
 - $1000 = $3.30 / GB

Capacity
- Mainstream, home uses
- **E.g., Seagate Barracuda 7200.11**
 - SATA 3Gb/s NCQ, SATA 1.5Gb/s NCQ
 - 1 TB, 3.5-inch disk
 - 4 disks, 8 heads
 - 7,200 RPM
 - 8-12 watts (idle-normal)
 - ?? ms avg. seek (last one 8.5)
 - 115 MB/s transfer rate
 - 0.75 Million Hrs MTBF
 - 5 year warrantee
 - $200 = $0.20 / GB

These use Perpendicular Magnetic Recording (PMR)!!

source: www.seagate.com
1 inch disk drive!

- **Hitachi 2007 release**
 - Development driven by iPods & digital cameras
 - 8GB, 5-10MB/s (higher?)
 - 42.8 x 36.4 x 5 mm

- **Perpendicular Magnetic Recording (PMR)**
 - **FUNDAMENTAL** new technique
 - Evolution from Longitudinal
 - Starting to hit physical limit due to superparamagnetism
 - They say 10x improvement

[Links]

- [www(hitachi.com/New/cnews/050405.html](http://www.hitachi.com/New/cnews/050405.html)
- www.hitachigst.com/hdd/research/recording_head/pr/
Where does Flash memory come in?

- Microdrives and Flash memory (e.g., CompactFlash) are going head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power (no moving parts, need to spin µdrives up/down)
 - Flash limitations: finite number of write cycles (wear on the insulating oxide layer around the charge storage mechanism)

- How does Flash memory work?
 - NMOS transistor with an additional conductor between gate and source/drain which “traps” electrons. The presence/absence is a 1 or 0.

en.wikipedia.org/wiki/Flash_memory
What does Apple put in its iPods?

- **Toshiba flash**
 - 1, 2GB
- **Samsung flash**
 - 4, 8GB
- **Toshiba flash**
 - 8, 16, 32GB
- **Toshiba 1.8-inch HDD**
 - 80, 160GB
Upcoming Calendar

<table>
<thead>
<tr>
<th>Week #</th>
<th>Mon</th>
<th>Wed</th>
<th>Thu Lab</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15</td>
<td>I/O Disks</td>
<td>Performance</td>
<td>I/O Polling P4 due</td>
<td>Writing really fast code (Casey)</td>
</tr>
<tr>
<td>This week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16</td>
<td>Parallelism in Processor Design</td>
<td>IntRA-machine Parallelism (Matt)</td>
<td>Parallel</td>
<td>IntER-machine Parallelism Perf comp due</td>
</tr>
<tr>
<td>Next week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#17</td>
<td>LAST CLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last week o’ classes</td>
<td>Summary, Review, & HKN Evals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18</td>
<td>FINAL REVIEW Sun @ 2-5pm 10 Evans</td>
<td>FINAL EXAM Mon 5-8pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upcoming Calendar

This week - #15
- **I/O Disks** on Mon
- **Performance** on Wed
- **I/O Polling P4 due** on Thu
- **Writing really fast code (Casey)** on Fri

Next week - #16
- **Parallelism in Processor Design** on Mon
- **IntRA-machine Parallelism (Matt)** on Wed
- **Parallel** on Thu
- **IntER-machine Parallelism Perf comp due** on Fri

Last week o’ classes - #17
- **LAST CLASS**
- **Summary, Review, & HKN Evals**

Final Review - #18
- **FINAL REVIEW Sun @ 2-5pm 10 Evans**
- **FINAL EXAM Mon 5-8pm 1 Pimintel**
Use Arrays of Small Disks…

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Conventional:

- 4 disk designs
- 3.5”
- 5.25”
- 10”
- 14”

Disk Array:

- 1 disk design
- 3.5”

Low End → High End
Replace Small # of Large Disks with Large # of Small!

(1988 Disks)

<table>
<thead>
<tr>
<th></th>
<th>IBM 3390K</th>
<th>IBM 3.5" 0061</th>
<th>x70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>20 GBytes</td>
<td>320 MBytes</td>
<td>23 GBytes</td>
</tr>
<tr>
<td>Volume</td>
<td>97 cu. ft.</td>
<td>0.1 cu. ft.</td>
<td>11 cu. ft.</td>
</tr>
<tr>
<td>Power</td>
<td>3 KW</td>
<td>11 W</td>
<td>1 KW</td>
</tr>
<tr>
<td>Data Rate</td>
<td>15 MB/s</td>
<td>1.5 MB/s</td>
<td>120 MB/s</td>
</tr>
<tr>
<td>I/O Rate</td>
<td>600 I/Os/s</td>
<td>55 I/Os/s</td>
<td>3900 I/Os/s</td>
</tr>
<tr>
<td>MTTF</td>
<td>250 KHrs</td>
<td>50 KHrs</td>
<td>??? Hrs</td>
</tr>
<tr>
<td>Cost</td>
<td>$250K</td>
<td>$2K</td>
<td>$150K</td>
</tr>
</tbody>
</table>

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?
Array Reliability

- Reliability - whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 \[\text{Reliability of } N \text{ disks} = \frac{\text{Reliability of 1 Disk}}{N} \] (assuming failures independent)
 - 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF:
 Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!
Redundant Arrays of (Inexpensive) Disks

- Files are “striped” across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - Capacity penalty to store redundant info
 - Bandwidth penalty to update redundant info
Berkeley History, RAID-I

- **RAID-I (1989)**
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software

- **Today RAID is > tens billion dollar industry, 80% nonPC disks sold in RAIDs**
"RAID 0": No redundancy = "AID"

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html
http://www.raid.com/04_00.html also has a great tutorial
RAID 1: Mirror data

- Each disk is fully duplicated onto its “mirror”
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead
RAID 3: Parity

- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)
Inspiration for RAID 5 (RAID 4 block-striping)

- **Small writes (write to one disk):**
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old data to new data, add the difference to P:
 - 1 logical write = 2 physical reads + 2 physical writes to 2 disks

- **Parity Disk is bottleneck for Small writes:** Write to A0, B1 \Rightarrow both write to P disk

![Diagram of RAID 5 configuration](image-url)
RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

en.wikipedia.org/wiki/Redundant_array_of_independent_disks
Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity) help with performance **and** availability
2. RAID 1 has higher cost than RAID 5
3. Small writes on RAID 5 are slower than on RAID 1
“And In conclusion…”

- **Magnetic Disks continue rapid advance:** 60%/yr capacity, 40%/yr bandwidth, slow seek, rotation improvements, MB/$ improving 100%/yr?
 - Designs to fit high volume form factor
 - PMR a fundamental new technology
 - breaks through barrier

- **RAID**
 - Higher performance with more disk arms per $
 - Adds option for small # of extra disks
 - Can nest RAID levels
 - Today RAID is > tens-billion dollar industry,
 80% nonPC disks sold in RAIDs, started at Cal
Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the “bonus” area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation.
BONUS: Hard Drives are Sealed. Why?

- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in². ~60 is state of the art.

- Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around 5-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.
The World’s Smallest Hard Drive

Hard disk
The glass disk’s metal coating—less than a thousandth of the thickness of a human hair—stores the same amount of data as a common DVD.

Actuator
Sweeps its microscopic read-and-write heads over both surfaces of the disk to position them for the transmission and retrieval of data.

Locking latch
The latch keeps the actuator from damaging the disk’s surface if the unit is dropped.

Spindle motor
Powered by nine electromagnets, the motor spins the disk at 15 miles an hour.

Rubber shock absorbers
They help protect the unit from the frequent jarring and jostling suffered by portable devices.

Circuit board
The hard drive’s brain, it directs all functions from disk speed to data flow.

It’s bite-size, but it packs a huge byte.
A new inch-long hard disk drive made by Hitachi holds four gigabytes of data—about a thousand times the drive capacity of a desktop computer 20 years ago. It’s the latest in a family of hard drives built to store data in handheld devices from PDAs to digital cameras. The hardest part of working small: Getting the actuator to move across the disk a mere 2,500,000th of an inch from its surface.

—Michael Klesius
Historical Perspective

- Form factor and capacity are more important in the marketplace than is performance

- Form factor evolution:
 - 1970s: Mainframes ⇒ 14 inch diameter disks
 - 1980s: Minicomputers, Servers ⇒ 8”, 5.25” diameter disks

Late 1980s/Early 1990s:
- PCs ⇒ 3.5 inch diameter disks
- Laptops, notebooks ⇒ 2.5 inch disks
- Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it

- Early 2000s:
 - MP3 players ⇒ 1 inch disks
Early Disk History (IBM)

1973:
1.7 Mbit/sq. in
140 MBytes

1979:
7.7 Mbit/sq. in
2,300 MBytes

“Makers of disk drives crowd even more data into even smaller spaces”
Early Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
1600 MBytes

1997:
3090 Mbit/sq. in
8100 MBytes

Disk Performance Example

- Calculate time to read 1 sector (512B) for Deskstar using advertised performance; sector is on outer track

 Disk latency = average seek time + average rotational delay + transfer time + controller overhead

 \[
 = 8.5 \text{ ms} + 0.5 \times \frac{1}{7200 \text{ RPM}} + 0.5 \frac{\text{ KB}}{100 \text{ MB/s}} + 0.1 \text{ ms}
 \]

 \[
 = 8.5 \text{ ms} + 0.5 \times \frac{1}{7200 \text{ RPM} / (60000 \text{ ms/M})} + 0.5 \times 100 \text{ KB/ms} + 0.1 \text{ ms}
 \]

 \[
 = 8.5 + 4.17 + 0.005 + 0.1 \text{ ms} = 12.77 \text{ ms}
 \]

- How many CPU clock cycles is this?