inst.eecs.berkeley.edu/~cs6lc

CS61C : Machine Structures

Lecture 5 — Introduction to C (pt 3)
C Memory Management

2010-01-29

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Apple’s iPad, day 2 =
After the dust has settled,
what do we have? Name causes
chuckles & lawsuits (Fujitsu). “Haters”
say nothing new, closed system.

M apple.com/ipad
05616105 mrotuction 0.0 (13 (1)

Garcia, Spring 2010 © UCB

Pointers (2/4) ...review...

*Solved by passing in a pointer to our
subroutine.

*Now what gets printed?

void AddOne (int *p) y =6
{ *p=tpt+ 1}

int y = 5;
AddOne (&y) ;
printf (“y = %d\n”, y);

Garcia, Spring 2010 © UCB

Pointers (4/4)

«Solution! Pass a pointer to a pointer,
declared as **h

*Now what gets printed?
void IncrementPtr (int **h) *q = 60
{ *h =*h+1; } T a
int A[3] = {50, 60, 70}; 1
int *q = A;

IncrementPtr (&q) ; 50 60 70
printf (“*q = %d\n”, *q);

Q CS61C L05 Introduction to C (pt 3) (6)

—Q

Garcia, Spring 2010 © UCB

Pointers (1/4) ...review...

*Sometimes you want to have a
procedure increment a variable?

*What gets printed?
void AddOne (int x) y =25
{ x= x+1; }
int y = 5;

AddOne(y) ;
printf(“y = %d\n”, y);

Garcia, Spring 2010 © UCB

Pointers (3/4)

< But what if what you want changed is
a pointer?

*What gets printed?

void IncrementPtr (int *p) *q = 50

{ p= p+1; } T

~—Q

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);

printf (“*q = %d\n”, *q);

50 | 60 | 70

Garcia, Spring 2010 © UCB

Dynamic Memory Allocation (1/4)

« C has operator sizeof () which gives size in bytes
(of type or variable)

» Assume size of objects can be misleading and is bad
style, so use sizeof (type)

« Many years ago an int was 16 bits, and programs were
written with this assumption.

« What is the size of integers now?

¢ “sizeof” knows the size of arrays:
int ar([3]; // or: int ar[] = {54, 47, 99}
sizeof(ar) = 12
- ...as well for arrays whose size is determined at run-time:
int n = 3;
int ar[n]; // Or: int ar[fun_that_returns_3()];
sizeof(ar) = 12

Garcia, Spring 2010 © UCB

Dynamic Memory Allocation (2/4)

*To allocate room for something new to
point to, use malloc () (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof (int));

*Now, ptr points to a space somewhere in
memory of size (sizeof (int)) in bytes.

* (int *) simply tells the compiler what will
go into that space (called a typecast).
emalloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof (int))
ﬂ * This allocates an array of n integers.

CS61C L05 Introduction to C (pt 3) (8) Garcia, Spring 2010 © UCB

Dynamic Memory Allocation (4/4)

« The following two things will cause your
program to crash or behave strangely later
on, and cause VERY VERY hard to figure
out bugs:

« free () ing the same piece of memory twice
+ calling free () on something you didn’t get
back frommalloc()

* The runtime does not check for these
mistakes

» Memory allocation is so performance-critical
that there just isn’t time to do this

+ The usual result is that you corrupt the memory
allocator’s internal structure

* You won’t find out until much later on, in a

Dynamic Memory Allocation (3/4)

*Once malloc () is called, the memory
location contains garbage, so don’t
use it until you’ve set its value.

« After dynamically allocating space, we
must dynamically free it:
free (ptr) ;

*Use this command to clean up.

* Even though the program frees all
m memory on exit (or when main returns),

don’t be lazy!

* You never know when your main will get
Q transformed into a subroutine!

CS61C L0 Introduction to C (pt 3) (9)

Garcia, Spring 2010 © UCB

ﬂ totally unrelated part of your code!

CS61C L05 Introduction to C (pt 3) (10) Garcia, Spring 2010 © UCB

Arrays not implemented as you’d think

void foo() {
int *p, *q, x;
int a[4];
P = (int *) malloc (sizeof(int));
q = &x;
*p = 1; // p[0] would also work here
printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*q = 2; // q[0] would also work here
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);
*a = 3; // al[0] would also work here
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ...
40]20] 2 {3 1

o~ ——pa/x /! unnamed-malloc-space

2 *p:1, p:40, &p:12
*q:2, q:20, &q:16

cssicLos nroes K&R: “An array name is not a variable” Garcia, Spring 2010 © UCB

Q(a %a:3, a:24, sa:24 <.

Kilo, Mega, Giga, , Peta, Exa, , Yotta

1. Kid meets giant Texas people exercising zen-like yoga. — Rolf O

2. Kind men give ten percent extra, zestfully, youthfully. — Hava E

3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. -
Gary M

4. Kindness means giving, teaching, permeating excess zeal yourself. — Hava E

5. Killing messengers gives terrible people exactly zero, yo

6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7. Kissing mediocre girls/guys teaches people (to) expect zero (from) you

8. Kinky Mean Girls Teach Penis-Extending Zen Yoga

9. Kissing Mel Gibson, Tom Petty exclaimed: “Zesty, yo!” — Dan G

10. Kissing me gives ten percent extra zeal & youth! — Dan G (borrowing parts)

ﬂ (CS61C LOS Introduction to C (pt 3) (13)

Garcia, Spring 2010 © UCB

“And in Conclusion...”

«Use handles to change pointers
* Create abstractions with structures

*Dynamically allocated heap memory
must be manually deallocated in C.

*Usemalloc() and free () to allocate
and deallocate memory from heap.

@ €S61C LOS Introduction to C (pt 3) (15)

Garcia, Spring 2010 © UCB

C structures : Overview

*A struct is a data structure
composed from simpler data types.

+Like a class in Java/C++ but without
methods or inheritance.
struct point { /* type definition */
int x;
int y;
void PrintPoint (struct point p)
{ Asalways in C, the argument is passed by “value” - a copy is made.

printf (*(%d,%d)”, p.x, p.y);

struct point pl = {0,10}; /* x=0, y=10 */

ﬂrint?oint (pl);
861G L0S Inroduction to C (1.3 (17)

Garcia, Spring 2010 © UCB

C structures: Pointers to them

< Usually, more efficient to pass a
pointer to the struct.

*The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.

*The following are equivalent:

struct point *p;

/* code to assign to pointer */
printf (“x is %d\n”, (*p).x);
printf (“x is %d\n”, p->x);

Q CS61C L0S Introduction to C (pt 3) (18)

Garcia, Spring 2010 © UCB

How big are structs?

*Recall C operator sizeof () which
gives size in bytes (of type or variable)

*How big is sizeof (p)?

struct p {
char x;
int y;
}i
+5 bytes? 8 bytes?
- Compiler may word align integer y

ﬂ CS61C L05 Introduction to C (pt 3) (19)

Garcia, Spring 2010 © UCB

Linked List Example

eLet’s look at an example of using
structures, pointers, malloc (), and
free () to implement a linked list of
strings.

/* node structure for linked list */
struct Node {

char *value;

struct Node *next;

};

Recursive

Q definition!
8616 LoSinocustion 0 (212 20)

Garcia, Spring 2010 © UCB

typedef simplifies the code

struct Node {
char *value: String value;
struct Node *next;

}i

/* "typedef" means define a new type */
typedef struct Node NodeStruct;

typedef struct Node {
char *value;

struct Node *next;
} NodeStruct;

/* Note similarity! */
/* To define 2 nodes */

... THEN struct Node {
char *value;
struct Node *next;

typedef NodeStruct *List;
} nodel, node2;

typedef char *String;

ﬂ (CS61C LOS Introduction to C (pt 3) (21)

Garcia, Spring 2010 © UCB

Linked List Example

/* Add a string to an existing list */
List cons(String s, List list)
{
List node = (List) malloc(sizeof (NodeStruct)) ;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

String sl = "abc", s2 = "cde";
List thelList = NULL;
thelist = cons(s2, thelist);
thelList = cons(sl, thelist);
/* or, just like (cons sl (cons s2 nil)) */

thelList = cons(sl, cons(s2, NULL));
@ CS61C L0S Introdustion to C (pt 3) (22) Garcia, Spring 2010 © UCB

Linked List Example Linked List Example
/* Add a string to an existing list, 2nd call */ /* Add a string to an existing list, 2nd call */
List cons(String s, List list) List cons(String s, List list)
{ {
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct)) ;
node->value = (String) malloc (strlen(s) + 1); node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s); strcpy (node->value, s);
node->next = list; node->next = list;
return node; return node;
} }
list: " list:
node:
e A [::EEEEﬂ_>444444— A
e 2 e
S n S

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{

{
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct));

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

} }
q list: " list:
noae: node:
LA — E“" .
L ‘ 7| NuLL | ‘ 71| NuLL
? S: ? S:
wapon

noonom

ﬂ ©881C L05 Introduction to C (pt 3) (25) Garcla, Spring 2010 © UCB Q CSB1C L0s Introduction to C (pt 3) (26) Garcia, Spring 2010 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{

{
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct)) ;

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

}
list:
node: P node: P
| L — ; 7] NuLe [— 7 NuLe
— S
"apeh

"apen
@ CS61C L0S Introduction to C (pt 3) (27) Garcia, Spring 2010 © UCB @ CS61C L0 Introduction to C (pt 3) (28) Garcia, Spring 2010 © UCB

