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Review 

  Pipelining is a BIG idea 
  Optimal Pipeline 

  Each stage is executing part of an instruction each 
clock cycle. 

  One instruction finishes during each clock cycle. 
  On average, execute far more quickly. 

  What makes this work? 
  Similarities between instructions allow us to use 

same stages for all instructions (generally). 
  Each stage takes about the same amount of time 

as all others: little wasted time. 
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Problems for Pipelining CPUs 
  Limits to pipelining: Hazards prevent next 

instruction from executing during its designated 
clock cycle 
  Structural hazards: HW cannot support some 

combination of instructions (single person to fold and 
put clothes away) 

  Control hazards: Pipelining of branches causes later 
instruction fetches to wait for the result of the branch 

  Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock) 

  These might result in pipeline stalls or “bubbles” 
in the pipeline. 
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Read same memory twice in same clock cycle 
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Structural Hazard #1: Single Memory (1/2) 

CS61C L29 CPU Design : Pipelining to Improve Performance II (5) Garcia, Spring 2010 © UCB 

Structural Hazard #1: Single Memory (2/2) 

  Solution: 
  infeasible and inefficient to create second memory 
  (We’ll learn about this more friday/next week) 
  …so simulate this by having two Level 1 Caches  

  (a temporary smaller [of usually most recently used] 
copy of memory) 

  have both an L1 Instruction Cache and  
an L1 Data Cache 

  need more complex hardware to control when 
both caches miss 
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Structural Hazard #2: Registers (1/2) 

Can we read and write to registers simultaneously? 
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Structural Hazard #2: Registers (2/2) 

  Two different solutions have been used: 
1) RegFile access is VERY fast: takes less than half the 

time of ALU stage 
  Write to Registers during first half of each clock cycle 
  Read from Registers during second half of each clock 

cycle 

2) Build RegFile with independent read and write 
ports 

  Result: can perform Read and Write during 
same clock cycle 
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Control Hazard: Branching (1/9) 

Where do we do the compare for the branch? 
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Control Hazard: Branching (2/9) 

  We had put branch decision-making 
hardware in ALU stage 
  therefore two more instructions after the branch 

will always be fetched, whether or not the branch 
is taken 

  Desired functionality of a branch 
  if we do not take the branch, don’t waste any time 

and continue executing normally 
  if we take the branch, don’t execute any 

instructions after the branch, just go to the desired 
label 
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Control Hazard: Branching (3/9) 

  Initial Solution: Stall until decision is made 
  insert “no-op” instructions (those that accomplish 

nothing, just take time) or hold up the fetch of the 
next instruction (for 2 cycles). 

  Drawback: branches take 3 clock cycles each 
(assuming comparator is put in ALU stage) 
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Control Hazard: Branching (4/9) 

  Optimization #1: 
  insert special branch comparator in Stage 2 
  as soon as instruction is decoded (Opcode 

identifies it as a branch), immediately make a 
decision and set the new value of the PC 

  Benefit: since branch is complete in Stage 2, only 
one unnecessary instruction is fetched, so only one 
no-op is needed 

  Side Note: This means that branches are idle in 
Stages 3, 4 and 5. 

CS61C L29 CPU Design : Pipelining to Improve Performance II (12) Garcia, Spring 2010 © UCB 

Control Hazard: Branching (5/9) 

Branch comparator moved to Decode stage. 
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Control Hazard: Branching (6/9) 

  User inserting no-op instruction 
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Control Hazard: Branching (7/9) 

  Controller inserting a single bubble 

add 

beq 

lw 
A

LU
	



  I$	

 Reg	

   D$	

 Reg	



A
LU
	



  I$	

 Reg	

   D$	

 Reg	



A
LU
	



Reg	

   D$	

 Reg	

  I$	



I 
n 
s 
t 
r. 

O 
r 
d 
e 
r 

Time (clock cycles) 

bub
ble 

Impact: 2 clock cycles per branch instruction ⇒ slow 
…story about engineer, physicist, mathematician asked to 

build a fence around a flock of sheep using minimal fence… 
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Control Hazard: Branching (8/9) 

  Optimization #2: Redefine branches 
  Old definition: if we take the branch, none of the 

instructions after the branch get executed by 
accident 

  New definition: whether or not we take the 
branch, the single instruction immediately 
following the branch gets executed (called the 
branch-delay slot) 

  The term “Delayed Branch” means 
we always execute inst after branch 

  This optimization is used with MIPS 
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Control Hazard: Branching (9/9) 

  Notes on Branch-Delay Slot 
  Worst-Case Scenario: can always put a no-op in 

the branch-delay slot 
  Better Case: can find an instruction preceding the 

branch which can be placed in the branch-delay 
slot without affecting flow of the program 
  re-ordering instructions is a common method of 

speeding up programs 
  compiler must be very smart in order to find 

instructions to do this 
  usually can find such an instruction at least 50% of 

the time 
  Jumps also have a delay slot… 
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Example: Nondelayed vs. Delayed Branch 

add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or  $8, $9 ,$10 

xor $10, $1,$11 

Nondelayed Branch 
add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or  $8, $9 ,$10 

xor $10, $1,$11 

Delayed Branch 

Exit: Exit: 
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Data Hazards (1/2) 

  Consider the following sequence of 
instructions 

add $t0, $t1, $t2 

sub $t4, $t0 ,$t3 

and $t5, $t0 ,$t6 

or  $t7, $t0 ,$t8 

xor $t9, $t0 ,$t10 
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Data Hazards (2/2) 

  Data-flow backward in time are hazards 
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Data Hazard Solution: Forwarding 
   Forward result from one stage to another	
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Data Hazard: Loads (1/4) 
  Dataflow backwards in time are hazards 

•  Can’t solve all cases with forwarding 
•  Must stall instruction dependent on load, then 

forward (more hardware)	
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Data Hazard: Loads (2/4) 
•  Hardware stalls pipeline 

•  Called “interlock”	
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Data Hazard: Loads (3/4) 

  Instruction slot after a load is called “load 
delay slot” 

  If that instruction uses the result of the load, 
then the hardware interlock will stall it for one 
cycle. 

  If the compiler puts an unrelated instruction in 
that slot, then no stall 

  Letting the hardware stall the instruction in 
the delay slot is equivalent to putting a nop in 
the slot  (except the latter uses more code 
space) 

CS61C L29 CPU Design : Pipelining to Improve Performance II (24) Garcia, Spring 2010 © UCB 

Data Hazard: Loads (4/4) 

  Stall is equivalent to nop 
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1)  Thanks to pipelining, I have reduced the time it 
took me to wash my one shirt. 

2)  Longer pipelines are always a win (since less work 
per stage & a faster clock). 

Peer Instruction 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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“And in Conclusion..” 

  Pipeline challenge is hazards 
  Forwarding helps w/many data hazards 
  Delayed branch helps with control hazard in 5 

stage pipeline 
  Load delay slot / interlock necessary 

  More aggressive performance:  
  Superscalar 
  Out-of-order execution 
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Bonus slides 

  These are extra slides that used to be 
included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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 Historical Trivia 

  First MIPS design did not interlock and stall on 
load-use data hazard 

  Real reason for name behind MIPS: 
Microprocessor without  
Interlocked  
Pipeline  
Stages 
  Word Play on acronym for  

Millions of Instructions Per Second,  
also called MIPS 
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Pipeline Hazard: Matching socks in later load 

  A depends on D; stall since folder tied up; Note this is much different 
from processor cases so far.  We have not had a earlier instruction 
depend on a later one. 
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Out-of-Order Laundry: Don’t Wait 

  A depends on D; rest continue; need more 
resources to allow out-of-order 
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Superscalar Laundry: Parallel per stage 

  More resources, HW to match mix of parallel 
tasks? 
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Superscalar Laundry: Mismatch Mix 

  Task mix underutilizes extra resources 
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Peer Instruction (1/2) 

Assume 1 instr/clock, delayed branch, 5 stage 
pipeline, forwarding, interlock on unresolved 
load hazards (after 103 loops, so pipeline full)"
Loop:  lw   $t0, 0($s1) 

   addu  $t0, $t0, $s2 
   sw   $t0, 0($s1) 
   addiu $s1, $s1, -4 
   bne   $s1, $zero, Loop 
   nop"

• How many pipeline stages (clock cycles) per 
loop iteration to execute this code?"

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

CS61C L29 CPU Design : Pipelining to Improve Performance II (34) Garcia, Spring 2010 © UCB 

Peer Instruction Answer (1/2) 
  Assume 1 instr/clock, delayed branch, 5 stage 

pipeline, forwarding, interlock on unresolved 
load hazards. 103 iterations, so pipeline full. 

Loop:  lw  $t0, 0($s1) 
 addu  $t0, $t0, $s2 
 sw  $t0, 0($s1) 
 addiu  $s1, $s1, -4 
 bne  $s1, $zero, Loop 
 nop 

  How many pipeline stages (clock cycles) per 
loop iteration to execute this code? 

1."
2. (data hazard so stall)"

3."
4."
5."
6."

(delayed branch so exec. nop)"7."

1  2  3  4  5  6  7  8  9  10 
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Peer Instruction (2/2) 

Assume 1 instr/clock, delayed branch, 5 stage 
pipeline, forwarding, interlock on unresolved 
load hazards (after 103 loops, so pipeline full). 
Rewrite this code to reduce pipeline stages 
(clock cycles) per loop to as few as possible. "
Loop:  lw   $t0, 0($s1) 

   addu  $t0, $t0, $s2 
   sw   $t0, 0($s1) 
   addiu $s1, $s1, -4 
   bne   $s1, $zero, Loop 
   nop"

• How many pipeline stages (clock cycles) per 
loop iteration to execute this code?"

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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Peer Instruction  (2/2) How long to execute? 

  How many pipeline stages (clock cycles) per 
loop iteration to execute your revised code? 
(assume pipeline is full) 

• Rewrite this code to reduce clock cycles 
per loop to as few as possible:"
Loop:  lw  $t0, 0($s1) 

 addiu $s1, $s1, -4  
 addu  $t0, $t0, $s2 
 bne  $s1, $zero, Loop 
 sw  $t0, +4($s1)"

(no hazard since extra cycle)"
1."

3."
4."
5."

2."

(modified sw to put past addiu)"

1  2  3  4  5  6  7  8  9  10 


