
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 29 – CPU Design :
Pipelining to Improve Performance II

 2010-04-07

Cal researcher Marty Banks has
put together a system to help
with the eyestrain many viewers
experience with 3D content on a
small screen – the vergence /
accomodation conflict.

Lecturer SOE
Dan Garcia

www.technologyreview.com/computing/24976
CS61C L29 CPU Design : Pipelining to Improve Performance II (2) Garcia, Spring 2010 © UCB

Review

  Pipelining is a BIG idea
  Optimal Pipeline

  Each stage is executing part of an instruction each
clock cycle.

  One instruction finishes during each clock cycle.
  On average, execute far more quickly.

  What makes this work?
  Similarities between instructions allow us to use

same stages for all instructions (generally).
  Each stage takes about the same amount of time

as all others: little wasted time.

CS61C L29 CPU Design : Pipelining to Improve Performance II (3) Garcia, Spring 2010 © UCB

Problems for Pipelining CPUs
  Limits to pipelining: Hazards prevent next

instruction from executing during its designated
clock cycle
  Structural hazards: HW cannot support some

combination of instructions (single person to fold and
put clothes away)

  Control hazards: Pipelining of branches causes later
instruction fetches to wait for the result of the branch

  Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

  These might result in pipeline stalls or “bubbles”
in the pipeline.

CS61C L29 CPU Design : Pipelining to Improve Performance II (4) Garcia, Spring 2010 © UCB

Read same memory twice in same clock cycle

 I$	

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Structural Hazard #1: Single Memory (1/2)

CS61C L29 CPU Design : Pipelining to Improve Performance II (5) Garcia, Spring 2010 © UCB

Structural Hazard #1: Single Memory (2/2)

  Solution:
  infeasible and inefficient to create second memory
  (We’ll learn about this more friday/next week)
  …so simulate this by having two Level 1 Caches

  (a temporary smaller [of usually most recently used]
copy of memory)

  have both an L1 Instruction Cache and
an L1 Data Cache

  need more complex hardware to control when
both caches miss

CS61C L29 CPU Design : Pipelining to Improve Performance II (6) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?

 I$	

sw

Instr 1

Instr 2

Instr 3

Instr 4

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (7) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (2/2)

  Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the

time of ALU stage
  Write to Registers during first half of each clock cycle
  Read from Registers during second half of each clock

cycle

2) Build RegFile with independent read and write
ports

  Result: can perform Read and Write during
same clock cycle

CS61C L29 CPU Design : Pipelining to Improve Performance II (8) Garcia, Spring 2010 © UCB

Control Hazard: Branching (1/9)

Where do we do the compare for the branch?

 I$	

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (9) Garcia, Spring 2010 © UCB

Control Hazard: Branching (2/9)

  We had put branch decision-making
hardware in ALU stage
  therefore two more instructions after the branch

will always be fetched, whether or not the branch
is taken

  Desired functionality of a branch
  if we do not take the branch, don’t waste any time

and continue executing normally
  if we take the branch, don’t execute any

instructions after the branch, just go to the desired
label

CS61C L29 CPU Design : Pipelining to Improve Performance II (10) Garcia, Spring 2010 © UCB

Control Hazard: Branching (3/9)

  Initial Solution: Stall until decision is made
  insert “no-op” instructions (those that accomplish

nothing, just take time) or hold up the fetch of the
next instruction (for 2 cycles).

  Drawback: branches take 3 clock cycles each
(assuming comparator is put in ALU stage)

CS61C L29 CPU Design : Pipelining to Improve Performance II (11) Garcia, Spring 2010 © UCB

Control Hazard: Branching (4/9)

  Optimization #1:
  insert special branch comparator in Stage 2
  as soon as instruction is decoded (Opcode

identifies it as a branch), immediately make a
decision and set the new value of the PC

  Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only one
no-op is needed

  Side Note: This means that branches are idle in
Stages 3, 4 and 5.

CS61C L29 CPU Design : Pipelining to Improve Performance II (12) Garcia, Spring 2010 © UCB

Control Hazard: Branching (5/9)

Branch comparator moved to Decode stage.

 I$	

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (13) Garcia, Spring 2010 © UCB

Control Hazard: Branching (6/9)

  User inserting no-op instruction

add

beq

nop

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

 I$	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

Impact: 2 clock cycles per branch instruction ⇒ slow

lw

bub
ble

bub
ble

bub
ble

bub
ble

CS61C L29 CPU Design : Pipelining to Improve Performance II (14) Garcia, Spring 2010 © UCB

Control Hazard: Branching (7/9)

  Controller inserting a single bubble

add

beq

lw
A

LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

 I$	

 Reg	

 D$	

 Reg	

A
LU
	

Reg	

 D$	

 Reg	

 I$	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

Impact: 2 clock cycles per branch instruction ⇒ slow
…story about engineer, physicist, mathematician asked to

build a fence around a flock of sheep using minimal fence…

CS61C L29 CPU Design : Pipelining to Improve Performance II (15) Garcia, Spring 2010 © UCB

Control Hazard: Branching (8/9)

  Optimization #2: Redefine branches
  Old definition: if we take the branch, none of the

instructions after the branch get executed by
accident

  New definition: whether or not we take the
branch, the single instruction immediately
following the branch gets executed (called the
branch-delay slot)

  The term “Delayed Branch” means
we always execute inst after branch

  This optimization is used with MIPS

CS61C L29 CPU Design : Pipelining to Improve Performance II (16) Garcia, Spring 2010 © UCB

Control Hazard: Branching (9/9)

  Notes on Branch-Delay Slot
  Worst-Case Scenario: can always put a no-op in

the branch-delay slot
  Better Case: can find an instruction preceding the

branch which can be placed in the branch-delay
slot without affecting flow of the program
  re-ordering instructions is a common method of

speeding up programs
  compiler must be very smart in order to find

instructions to do this
  usually can find such an instruction at least 50% of

the time
  Jumps also have a delay slot…

CS61C L29 CPU Design : Pipelining to Improve Performance II (17) Garcia, Spring 2010 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:
CS61C L29 CPU Design : Pipelining to Improve Performance II (18) Garcia, Spring 2010 © UCB

Data Hazards (1/2)

  Consider the following sequence of
instructions

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

CS61C L29 CPU Design : Pipelining to Improve Performance II (19) Garcia, Spring 2010 © UCB

Data Hazards (2/2)

  Data-flow backward in time are hazards

sub $t4,$t0,$t3

A
LU
	

I$	

 Reg	

 D$	

 Reg	

and $t5,$t0,$t6

A
LU
	

I$	

 Reg	

 D$	

 Reg	

or $t7,$t0,$t8 I$	

A
LU
	

Reg	

 D$	

 Reg	

xor $t9,$t0,$t10

A
LU
	

I$	

 Reg	

 D$	

 Reg	

add $t0,$t1,$t2
IF ID/RF EX MEM WB A

LU
	

I$	

 Reg	

 D$	

 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (20) Garcia, Spring 2010 © UCB

Data Hazard Solution: Forwarding
  Forward result from one stage to another	

sub $t4,$t0,$t3
A

LU
	

I$	

 Reg	

 D$	

 Reg	

and $t5,$t0,$t6

A
LU
	

I$	

 Reg	

 D$	

 Reg	

or $t7,$t0,$t8 I$	

A
LU
	

Reg	

 D$	

 Reg	

xor $t9,$t0,$t10

A
LU
	

I$	

 Reg	

 D$	

 Reg	

add $t0,$t1,$t2
IF ID/RF EX MEM WB A

LU
	

I$	

 Reg	

 D$	

 Reg	

 "“or” hazard solved by register hardware	

CS61C L29 CPU Design : Pipelining to Improve Performance II (21) Garcia, Spring 2010 © UCB

Data Hazard: Loads (1/4)
  Dataflow backwards in time are hazards

•  Can’t solve all cases with forwarding
•  Must stall instruction dependent on load, then

forward (more hardware)	

sub $t3,$t0,$t2
A

LU
	

I$	

 Reg	

 D$	

 Reg	

lw $t0,0($t1)
IF ID/RF EX MEM WB A

LU
	

I$	

 Reg	

 D$	

 Reg	

CS61C L29 CPU Design : Pipelining to Improve Performance II (22) Garcia, Spring 2010 © UCB

Data Hazard: Loads (2/4)
•  Hardware stalls pipeline

•  Called “interlock”	

sub $t3,$t0,$t2

A
LU
	

I$	

 Reg	

 D$	

 Reg	

bub
ble

and $t5,$t0,$t4

A
LU
	

I$	

 Reg	

 D$	

 Reg	

bub
ble

or $t7,$t0,$t6 I$	

A
LU
	

Reg	

 D$	

bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WB A

LU
	

I$	

 Reg	

 D$	

 Reg	

CS61C L29 CPU Design : Pipelining to Improve Performance II (23) Garcia, Spring 2010 © UCB

Data Hazard: Loads (3/4)

  Instruction slot after a load is called “load
delay slot”

  If that instruction uses the result of the load,
then the hardware interlock will stall it for one
cycle.

  If the compiler puts an unrelated instruction in
that slot, then no stall

  Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code
space)

CS61C L29 CPU Design : Pipelining to Improve Performance II (24) Garcia, Spring 2010 © UCB

Data Hazard: Loads (4/4)

  Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$	

A
LU
	

Reg	

 D$	

lw $t0, 0($t1) A
LU
	

I$	

 Reg	

 D$	

 Reg	

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LU
	

I$	

 Reg	

 D$	

 Reg	

A
LU
	

I$	

 Reg	

 D$	

 Reg	

nop

CS61C L29 CPU Design : Pipelining to Improve Performance II (25) Garcia, Spring 2010 © UCB

1)  Thanks to pipelining, I have reduced the time it
took me to wash my one shirt.

2)  Longer pipelines are always a win (since less work
per stage & a faster clock).

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L29 CPU Design : Pipelining to Improve Performance II (26) Garcia, Spring 2010 © UCB

“And in Conclusion..”

  Pipeline challenge is hazards
  Forwarding helps w/many data hazards
  Delayed branch helps with control hazard in 5

stage pipeline
  Load delay slot / interlock necessary

  More aggressive performance:
  Superscalar
  Out-of-order execution

CS61C L29 CPU Design : Pipelining to Improve Performance II (27) Garcia, Spring 2010 © UCB

Bonus slides

  These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L29 CPU Design : Pipelining to Improve Performance II (28) Garcia, Spring 2010 © UCB

 Historical Trivia

  First MIPS design did not interlock and stall on
load-use data hazard

  Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages
  Word Play on acronym for

Millions of Instructions Per Second,
also called MIPS

CS61C L29 CPU Design : Pipelining to Improve Performance II (29) Garcia, Spring 2010 © UCB

Pipeline Hazard: Matching socks in later load

  A depends on D; stall since folder tied up; Note this is much different
from processor cases so far. We have not had a earlier instruction
depend on a later one.

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30

CS61C L29 CPU Design : Pipelining to Improve Performance II (30) Garcia, Spring 2010 © UCB

Out-of-Order Laundry: Don’t Wait

  A depends on D; rest continue; need more
resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

E

F

bubble

CS61C L29 CPU Design : Pipelining to Improve Performance II (31) Garcia, Spring 2010 © UCB

Superscalar Laundry: Parallel per stage

  More resources, HW to match mix of parallel
tasks?

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

30 30 30 30 30

CS61C L29 CPU Design : Pipelining to Improve Performance II (32) Garcia, Spring 2010 © UCB

Superscalar Laundry: Mismatch Mix

  Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L29 CPU Design : Pipelining to Improve Performance II (33) Garcia, Spring 2010 © UCB

Peer Instruction (1/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full)"
Loop: lw $t0, 0($s1)

 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop"

• How many pipeline stages (clock cycles) per
loop iteration to execute this code?"

1
2
3
4
5
6
7
8
9
10

CS61C L29 CPU Design : Pipelining to Improve Performance II (34) Garcia, Spring 2010 © UCB

Peer Instruction Answer (1/2)
  Assume 1 instr/clock, delayed branch, 5 stage

pipeline, forwarding, interlock on unresolved
load hazards. 103 iterations, so pipeline full.

Loop: lw $t0, 0($s1)
 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop

  How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1."
2. (data hazard so stall)"

3."
4."
5."
6."

(delayed branch so exec. nop)"7."

1 2 3 4 5 6 7 8 9 10

CS61C L29 CPU Design : Pipelining to Improve Performance II (35) Garcia, Spring 2010 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible. "
Loop: lw $t0, 0($s1)

 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop"

• How many pipeline stages (clock cycles) per
loop iteration to execute this code?"

1
2
3
4
5
6
7
8
9
10

CS61C L29 CPU Design : Pipelining to Improve Performance II (36) Garcia, Spring 2010 © UCB

Peer Instruction (2/2) How long to execute?

  How many pipeline stages (clock cycles) per
loop iteration to execute your revised code?
(assume pipeline is full)

• Rewrite this code to reduce clock cycles
per loop to as few as possible:"
Loop: lw $t0, 0($s1)

 addiu $s1, $s1, -4
 addu $t0, $t0, $s2
 bne $s1, $zero, Loop
 sw $t0, +4($s1)"

(no hazard since extra cycle)"
1."

3."
4."
5."

2."

(modified sw to put past addiu)"

1 2 3 4 5 6 7 8 9 10

