inst.eecs.berkeley.edu/~csé6lc

UCB CS61C : Machine Structures

Lecture 29 - CPU Design :
Pipelining to Im?roovs Performance i

Lecturer SOE
Dan Garcia

IS 3D BAD FOR YOU? MANY HAVE EYESTRAIN!

Cal researcher Marty Banks has
put together a system to help
with the eyestrain many viewers
experience with 3D content on a
small screen - the vergence /
accomodation conflict.

www . technologyreview.com/computing/24976

Problems for Pipelining CPUs

= Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

= Structural hazards: HW cannot support some
combination of instructions (single person to fold and
put clothes away)

= Control hazards: Pipelining of branches causes later
instruction fetches to wait for the result of the branch
= Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)
= These might result in pipeline stalls or “bubbles”
in the pipeline.

Structural Hazard #1: Single Memory (2/2)

= Solution:
= infeasible and inefficient to create second memory
= (We’ll learn about this more friday/next week)
= ...s0 simulate this by having two Level 1 Caches

* (a temporary smaller [of usually most recently used]
copy of memory)

= have both an L1 Instruction Cache and
an L1 Data Cache

= need more complex hardware to control when
both caches miss

47 -

Review

= Pipelining is a BIG idea
= Optimal Pipeline
= Each stage is executing part of an instruction each
clock cycle.
= One instruction finishes during each clock cycle.
= On average, execute far more quickly.
= What makes this work?
= Similarities between instructions allow us to use
same stages for all instructions (generally).
= Each stage takes about the same amount of time
as all others: little wasted time

#74 | —_—

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

Load

Instr 1

Reg.
'
IE’ Reg

Read same memory iwloe in same clock cycle

Instr 2

Instr 3

Instr 4

Eii oa=0 TS -
8

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

|

n

s

t sw

. [Instr 1

O [Instr 2

; Instr 3 '

€ YInstr 4 £y
r

@ Can we read and write fo reglsters simultaneously?

Garda, e

Structural Hazard #2: Registers (2/2)

= Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the
time of ALU stage
+ Write to Registers during first half of each clock cycle
* Read from Registers during second half of each clock
cycle
2) Build RegFile with independent read and write
ports
= Result: can perform Read and Write during
same clock cycle

474 -

Control Hazard: Branching (1/9)

Time (clock cycles)

|

t |Instr1 IE

- Instr 2 IE -

? Instr 3 IE

g Instr 4 IE e

Q Where do we do the compare for the branch?

Control Hazard: Branching (2/9)

= We had put branch decision-making
hardware in ALU stage
= therefore two more instructions after the branch
will always be fetched, whether or not the branch
is faken
= Desired functionality of a branch
= if we do not take the branch, don‘t waste any time
and continue executing normally
= if we take the branch, don‘t execute any
instructions after the branch, just go to the desired
label

474 -

Control Hazard: Branching (3/9)

= Initial Solution: Stall until decision is made
= insert “no-op” instructions (those that accomplish
nothing, just take time) or hold up the fetch of the
next instruction (for 2 cycles).
= Drawback: branches take 3 clock cycles each
(assuming comparator is put in ALU stage)

Control Hazard: Branching (4/9)

= Optimization #1:
= insert special branch comparator in Stage 2
= as soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

= Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only one
no-op is needed

= Side Nofe: This means that branches are idle in
Stages 3, 4 and 5.

47 -

474 -

Control Hazard: Branching (5/9)

Time (clock cycles)

|
n
5 beq
t [Instr1
r.
Instr 2
? Instr 3 —
d *Instr 4 3 B
e :

Q Branch compurc;for moved fo Decode stage.

Control Hazard: Branching (6/9)

I = User inserting no-op instruction

beq
O |nop
r
d llw
? Impact: 2 clock cycles per branch instruction = slow

Control Hazard: Branching (7/9)
I = Controller inserting a single bubble

n __ Time(clockcycles)
t |add] [
r.
beq
O |1w
r
d
f Impact: 2 clock cycles per branch instruction = slow

about engineer, physicist, mathematician asked to

...sfo
@ builgl a fence around a flock of sheep using minimal fence..

Garda,

Control Hazard: Branching (8/9)

= Optimization #2: Redefine branches
= Old definition: if we take the branch, none of the
instructions after the branch get executed by
accident
= New definition: whether or not we take the
branch, the single instruction immediately
following the branch gets executed (called the
branch-delay slof)
= The term “Delayed Branch” means
we always execute inst after branch

= This optimization is used with MIPS

474 -

Control Hazard: Branching (9/9)

= Notes on Branch-Delay Slot
= Worst-Case Scenario: can always put a no-op in
the branch-delay slot
= Better Case: can find an instruction preceding the
branch which can be placed in the branch-delay
slot without affecting flow of the program
- re-ordering instructions is a common method of
speeding up programs
+ compiler must be very smart in order to find
instructions to do this
- usually can find such an instruction at least 50% of
the time

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch
or $8, $9 ,$10

Delayed Branch

add $1 ,$2,$3
add $1 ,$2,$3 sub $4, $5,%$6
sub $4, $5,$6 beq $1, $4, Exit

beq $1, $4, Exit or $8, $9 ,$10

xor $10, $1,$11 xor $10, $1,$11

Exit:

Qxit:

@ - Jumps also have a delay slot...

Data Hazards (1/2)

= Consider the following sequence of
instructions

add $t0, $t1, $t2
sub $t4, $t0 ,$t3
and $t5, $t0 ,5té6
or $t7, $t0 ,5$t8
xor $t9, $t0 ,$tl0

Data Hazards (2/2)

= Data-flow backward in time are hazards
Time (clock cycles)

|
n
IF_: ID/RI X
f add m,w,stz eyiim e
r. |sub $t4,50,$t3 Rl A [

and $t5,$t0,5t6 ree T pffps T[kee

or $t7,$t0,5t8 d

oaa=0

xor $t9,$t0,$t10

47

Data Hazard Solution: Forwarding

@ “or” hazard solved by register hardware

= Forward result fl;om one stage to gnother

IF_iIDIRF

add $t0,$t1,$t2 1s [{]ret]
sub $t4,$t0,$t3

and $t5,$t0,$t6
or $t7,$t0,$t8

xor $t9,$t0,$t10

Data Hazard: Loads (1/4)
= Dataflow backwards in time are hazards

IF_:

Iw $t0,0($t1) s J{{x
sub $t3,$t0,5t2

¢ Can‘t solve all cases with forwarding
¢ Must stall instruction dependent on load, then
forward (more hardware)

Data Hazard: Loads (2/4)

¢ Hardware stalls pipeline
« Called “inferlock”

IF

Iw $t0, 0($t1) [Jifea]

sub $t3,$t0,5t2

and $t5,$t0,5t4

or $t7,5t0,5t6

[Data Hazard: Loads (374)]

= Instruction slot after a load is called “load
delay slot”

= [If that instruction uses the result of the load,
then the hardware interlock will stall it for one
cycle.

= If the compiler puts an unrelated instruction in
that slot, then no stall

= Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code

@ space) _

G ~

Data Hazard: Loads (4/4)
= Stall is equivalent to nop

Iw $t0, 0($t1) {ﬁ

nop

sub $t3,$t0,$t2
and $t5,$t0,$t4

or $t7,5t0,5t6

SY[E O
H

“And in Conclusion..”

= Pipeline challenge is hazards
= Forwarding helps w/many data hazards
= Delayed branch helps with control hazard in 5
stage pipeline
= Load delay slot / interlock necessary
= More aggressive performance:
= Superscalar
= Out-of-order execution

#74 -

Peer Instruction
1) Thanks to pipelining, | have reduced the time it 12
took me o wash my one shirt. g; gg
2) Lon ipelines are a a win (since less work) TF
pergsetrag'epgl a faster cloa. g) TT
Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

= The slides will appear in the order they would
have in the normal presentation

. Bonus

Historical Trivia

= First MIPS design did not interlock and stall on
load-use data hazard

= Real reason for name behind MIPS:

Microprocessor without

Interlocked

Pipeline

Stages

= Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

Pipeline Hazard: Matching socks in later load

PM 7 9 10

Time

x0n 0 -

SoQ~0

= A depends on D; stall since folder tied up; Note this is much different
from processor cases so far. We have not had a earfier instruction
Q depend on a later one.

Garda,

474 -

Out-of-Order Laundry: Don‘t Wait

6PM 7 8 9 10 11 12 1 2AM

Time

x>0 0 -

~=oQa~0

= A depends on D; rest continue; need more
resources to allow out-of-order

Garda,

Superscalar Laundry: Parallel per stage

6 PM 7 8 9 10 11 12 1 2AM

303030 30 30 Time
&[54/ (light clothing)
BIE&A (dark clothing)
BS54/ (very dirty clothing)

x>0 0 -

& (Ja&4 (light clothing)
& B/ (darkclothing)

(very dirty clothing)

& J%A
= More resources, HW to match mix of parallel
@ tasks?

~oQ~0

Garda,

Superscalar Laundry: Mismatch Mix
— 6PM 7 8 9 10 11 12 1 2AM

= :
3030 30 30 30 30 30 Ll

;
a|&(JFP4 A (light clothing)
(| A

05044
7|® @344/ (ight clothing)
d|& [Jb (dark clothing)
e

(light clothing)

@ Task mix underutilizes extra resources

Garda, e

Peer Instruction (1/2)

Peer Instruction Answer (1/2)

ipeline, forwardin i’n?le.nock on Unresolved

oad hazards. 10° iferations, so pipeline full.

Loop:q 1w . (61 gas E?zard so stall)
3. addu , $s2
4. SW St0, 1)
5 addiu $sl, $sl, -4
6. bne sl, Szero, Loop
" nop
7. layed branch so exec. nop)

* How man pi;(%?in stages (clock

es) per
loop iterafion execufeﬁis code? Jo

12345 6@ s 9 10

S TSV Y CPU D Pipaiung 1o oy

Assume 1 instr/clock, delayed branch, 5 stage
Plpellne, forwardmgr interlock on unresolve —
oad hazards (after 10° loops, so pipeline full) 1
2
Loop: 1 t0, 0($sl
oop agdu %to, $ég? -)$52 3
sw t0, 0($sl) 4
addiu $s1, $sl1, -4 5
bne $sl, $zero, Loop 6
nop 7
*How many pipeline stages (clock cycles) per 8
loop iteration to executé this code? 5190
== Garda, o1y 26706 U8
Peer Instruction (2/2)
Assume 1 instr/clock, delayed branch, 5 stage
Ialpellne, forwarding, interlock on unresolve
oad hazards (after 10° loops, so pipeline full).
Rewrite this code to reduce pipeline stages —
(clock cycles) per loop to as few as possible. ;
Loop: 1w $t0, 0($sl) 3
addu $t0, $t0, $s2 2
sw St0, 0($s1)
addiu $sl1l, $s1, -4 5
bne $sl, $zero, Loop 6
nop 7
*How many pipeline stages (clock cycles) per g
loop iteration to execute this code? 0

474 —

Peer Instruction (2/2) How long to execute?
* Rewrite this code to reduce clock cycles
perloop to as few as possible:

(no hazard s]i.n)ce extra cycle)

Loop: 1. 1w
2. addiu 531 -4
3 addu $t0, $s2
4. bne $s1, ro, Loo
5. SW $t0, +4($sl)

(modified sw to put past addiu)

oop ton to execute your revised co
(assume pipeline is fu

123 a6 7 8 9 10

#7 —_—

= How many pipeline stages (clock cycles) per
I opp“e’ gos ia ’J’e?

