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Review 

  Pipelining is a BIG idea 
  Optimal Pipeline 

  Each stage is executing part of an instruction each 
clock cycle. 

  One instruction finishes during each clock cycle. 
  On average, execute far more quickly. 

  What makes this work? 
  Similarities between instructions allow us to use 

same stages for all instructions (generally). 
  Each stage takes about the same amount of time 

as all others: little wasted time. 
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Problems for Pipelining CPUs 
  Limits to pipelining: Hazards prevent next 

instruction from executing during its designated 
clock cycle 
  Structural hazards: HW cannot support some 

combination of instructions (single person to fold and 
put clothes away) 

  Control hazards: Pipelining of branches causes later 
instruction fetches to wait for the result of the branch 

  Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock) 

  These might result in pipeline stalls or “bubbles” 
in the pipeline. 
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Read same memory twice in same clock cycle 
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Structural Hazard #1: Single Memory (1/2) 
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Structural Hazard #1: Single Memory (2/2) 

  Solution: 
  infeasible and inefficient to create second memory 
  (We’ll learn about this more friday/next week) 
  …so simulate this by having two Level 1 Caches  
  (a temporary smaller [of usually most recently used] 

copy of memory) 

  have both an L1 Instruction Cache and  
an L1 Data Cache 

  need more complex hardware to control when 
both caches miss 
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Structural Hazard #2: Registers (1/2) 

Can we read and write to registers simultaneously? 
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Structural Hazard #2: Registers (2/2) 

  Two different solutions have been used: 
1) RegFile access is VERY fast: takes less than half the 

time of ALU stage 
  Write to Registers during first half of each clock cycle 
  Read from Registers during second half of each clock 

cycle 

2) Build RegFile with independent read and write 
ports 

  Result: can perform Read and Write during 
same clock cycle 
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Control Hazard: Branching (1/9) 

Where do we do the compare for the branch? 
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Control Hazard: Branching (2/9) 

  We had put branch decision-making 
hardware in ALU stage 
  therefore two more instructions after the branch 

will always be fetched, whether or not the branch 
is taken 

  Desired functionality of a branch 
  if we do not take the branch, don’t waste any time 

and continue executing normally 
  if we take the branch, don’t execute any 

instructions after the branch, just go to the desired 
label 
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Control Hazard: Branching (3/9) 

  Initial Solution: Stall until decision is made 
  insert “no-op” instructions (those that accomplish 

nothing, just take time) or hold up the fetch of the 
next instruction (for 2 cycles). 

  Drawback: branches take 3 clock cycles each 
(assuming comparator is put in ALU stage) 
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Control Hazard: Branching (4/9) 

  Optimization #1: 
  insert special branch comparator in Stage 2 
  as soon as instruction is decoded (Opcode 

identifies it as a branch), immediately make a 
decision and set the new value of the PC 

  Benefit: since branch is complete in Stage 2, only 
one unnecessary instruction is fetched, so only one 
no-op is needed 

  Side Note: This means that branches are idle in 
Stages 3, 4 and 5. 
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Control Hazard: Branching (5/9) 

Branch comparator moved to Decode stage. 
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Control Hazard: Branching (6/9) 

  User inserting no-op instruction 
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Control Hazard: Branching (7/9) 

  Controller inserting a single bubble 
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Impact: 2 clock cycles per branch instruction ⇒ slow 
…story about engineer, physicist, mathematician asked to 

build a fence around a flock of sheep using minimal fence… 
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Control Hazard: Branching (8/9) 

  Optimization #2: Redefine branches 
  Old definition: if we take the branch, none of the 

instructions after the branch get executed by 
accident 

  New definition: whether or not we take the 
branch, the single instruction immediately 
following the branch gets executed (called the 
branch-delay slot) 

  The term “Delayed Branch” means 
we always execute inst after branch 

  This optimization is used with MIPS 
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Control Hazard: Branching (9/9) 

  Notes on Branch-Delay Slot 
  Worst-Case Scenario: can always put a no-op in 

the branch-delay slot 
  Better Case: can find an instruction preceding the 

branch which can be placed in the branch-delay 
slot without affecting flow of the program 
  re-ordering instructions is a common method of 

speeding up programs 
  compiler must be very smart in order to find 

instructions to do this 
  usually can find such an instruction at least 50% of 

the time 
  Jumps also have a delay slot… 
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Example: Nondelayed vs. Delayed Branch 

add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or  $8, $9 ,$10 

xor $10, $1,$11 

Nondelayed Branch 
add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or  $8, $9 ,$10 

xor $10, $1,$11 

Delayed Branch 

Exit: Exit: 
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Data Hazards (1/2) 

  Consider the following sequence of 
instructions 

add $t0, $t1, $t2 

sub $t4, $t0 ,$t3 

and $t5, $t0 ,$t6 

or  $t7, $t0 ,$t8 

xor $t9, $t0 ,$t10 
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Data Hazards (2/2) 

  Data-flow backward in time are hazards 
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Data Hazard Solution: Forwarding 
   Forward result from one stage to another	
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Data Hazard: Loads (1/4) 
  Dataflow backwards in time are hazards 

•  Can’t solve all cases with forwarding 
•  Must stall instruction dependent on load, then 

forward (more hardware)	
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Data Hazard: Loads (2/4) 
•  Hardware stalls pipeline 

•  Called “interlock”	
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Data Hazard: Loads (3/4) 

  Instruction slot after a load is called “load 
delay slot” 

  If that instruction uses the result of the load, 
then the hardware interlock will stall it for one 
cycle. 

  If the compiler puts an unrelated instruction in 
that slot, then no stall 

  Letting the hardware stall the instruction in 
the delay slot is equivalent to putting a nop in 
the slot  (except the latter uses more code 
space) 
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Data Hazard: Loads (4/4) 

  Stall is equivalent to nop 
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1)  Thanks to pipelining, I have reduced the time it 
took me to wash my one shirt. 

2)  Longer pipelines are always a win (since less work 
per stage & a faster clock). 

Peer Instruction 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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“And in Conclusion..” 

  Pipeline challenge is hazards 
  Forwarding helps w/many data hazards 
  Delayed branch helps with control hazard in 5 

stage pipeline 
  Load delay slot / interlock necessary 

  More aggressive performance:  
  Superscalar 
  Out-of-order execution 
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Bonus slides 

  These are extra slides that used to be 
included in lecture notes, but have been 
moved to this, the “bonus” area to serve as a 
supplement. 

  The slides will appear in the order they would 
have in the normal presentation 
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 Historical Trivia 

  First MIPS design did not interlock and stall on 
load-use data hazard 

  Real reason for name behind MIPS: 
Microprocessor without  
Interlocked  
Pipeline  
Stages 
  Word Play on acronym for  

Millions of Instructions Per Second,  
also called MIPS 
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Pipeline Hazard: Matching socks in later load 

  A depends on D; stall since folder tied up; Note this is much different 
from processor cases so far.  We have not had a earlier instruction 
depend on a later one. 
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Out-of-Order Laundry: Don’t Wait 

  A depends on D; rest continue; need more 
resources to allow out-of-order 
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Superscalar Laundry: Parallel per stage 

  More resources, HW to match mix of parallel 
tasks? 
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Superscalar Laundry: Mismatch Mix 

  Task mix underutilizes extra resources 
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Peer Instruction (1/2) 

Assume 1 instr/clock, delayed branch, 5 stage 
pipeline, forwarding, interlock on unresolved 
load hazards (after 103 loops, so pipeline full)"
Loop:  lw   $t0, 0($s1) 

   addu  $t0, $t0, $s2 
   sw   $t0, 0($s1) 
   addiu $s1, $s1, -4 
   bne   $s1, $zero, Loop 
   nop"

• How many pipeline stages (clock cycles) per 
loop iteration to execute this code?"

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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Peer Instruction Answer (1/2) 
  Assume 1 instr/clock, delayed branch, 5 stage 

pipeline, forwarding, interlock on unresolved 
load hazards. 103 iterations, so pipeline full. 

Loop:  lw  $t0, 0($s1) 
 addu  $t0, $t0, $s2 
 sw  $t0, 0($s1) 
 addiu  $s1, $s1, -4 
 bne  $s1, $zero, Loop 
 nop 

  How many pipeline stages (clock cycles) per 
loop iteration to execute this code? 

1."
2. (data hazard so stall)"

3."
4."
5."
6."

(delayed branch so exec. nop)"7."

1  2  3  4  5  6  7  8  9  10 
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Peer Instruction (2/2) 

Assume 1 instr/clock, delayed branch, 5 stage 
pipeline, forwarding, interlock on unresolved 
load hazards (after 103 loops, so pipeline full). 
Rewrite this code to reduce pipeline stages 
(clock cycles) per loop to as few as possible. "
Loop:  lw   $t0, 0($s1) 

   addu  $t0, $t0, $s2 
   sw   $t0, 0($s1) 
   addiu $s1, $s1, -4 
   bne   $s1, $zero, Loop 
   nop"

• How many pipeline stages (clock cycles) per 
loop iteration to execute this code?"

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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Peer Instruction  (2/2) How long to execute? 

  How many pipeline stages (clock cycles) per 
loop iteration to execute your revised code? 
(assume pipeline is full) 

• Rewrite this code to reduce clock cycles 
per loop to as few as possible:"
Loop:  lw  $t0, 0($s1) 

 addiu $s1, $s1, -4  
 addu  $t0, $t0, $s2 
 bne  $s1, $zero, Loop 
 sw  $t0, +4($s1)"

(no hazard since extra cycle)"
1."

3."
4."
5."

2."

(modified sw to put past addiu)"

1  2  3  4  5  6  7  8  9  10 


