UCB CS61C : Machine Structures

Lecture 29 - CPU Design :
Pipelining to Improve Performance Il
2010-04-07

IS 3D BAD FOR YOU? MANY HAVE EYESTRAIN!

Cal researcher Marty Banks has
put together a system to help |
with the eyestrain many viewers |
experience with 3D content on a @, !
small screen - the vergence / %‘(o
accomodation conflict. > '
www . technologyreview.com/computing/24976

Review

= Pipelining is a BIG idea
= Optimal Pipeline

= One instruction finishes during each clock cycle.
= On average, execute far more quickly.

» What makes this work?

= Similarities between instructions allow us to use
same stages for all instructions (generally).

= Each stage takes about the same amount of time
as all others: litle wasted time.

i
. . CS61C L29 CPU Design : Pipelining to Improve Performance Il (2) Garcia, Spring 2010 © UCB

Problems for Pipelining CPUs

= Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

= Structural hazards: HW cannot support some
combination of instructions (single person to fold and

put clothes away)

= Control hazards: Pipelining of branches causes later
instruction fetches to wait for the result of the branch

= Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

= These might result in pipeline stalls or “bubbles”
_in the pipeline.

CS61C L29 CPU Design : Pipelining to Improve Performance i Garcia, Spring 2010 © UCB

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

Load

Instr1 | L 2™ p

I Reg [

Instr 3

s |

YInstr 4

Read same merhory twice in same clock éycle !

i
. .~ CS61C L29 CPU Design : Pipelining to Improve Performance Il (4) Garcia, Spring 2010 © UCB

Structural Hazard #1: Single Memory (2/2)

= Solution:
= infeasible and inefficient to create second memory

= ...50 simulate this by having two Level 1 Caches

- (a temporary smaller [of usually most recently used]
copy of memory)

= have both an L1 Instruction Cache and
an L1 Data Cache

= need more complex hardware to control when
both caches miss

oy
/ CS61C L29 CPU Design : Pipelining to Improve Performance i (5] Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (1/2)

Time (clock cycles) X

SW

I

n
S
t
r

Instr 1

Instr 2

Instr 3

YInstr 4

,/ / Can we read and write o regusters slmultaneouslw

CS61C L29 CPU Design : Pipelining to Improve Performance i (6) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (2/2)

= Two different solutions have been used:

1) RegFile access is VERY fast: takes less than half the
time of ALU stage

- Write to Registers during first half of each clock cycle
- Read from Registers during second half of each clock

cycle
2) Build RegFile with independent read and write
ports

= Result: can perform Read and Write during
same clock cycle

Control Hazard: Branching (1/9)

Time (clock cycles)

beq

Instr 1

Instr 2

Instr 3

Reg

YInstr 4

f;f Where do we do the :com:pare: for the branch?

*‘/‘ -~) CS6IC 129 CPU Design : Pipelining to Improve Performance Il (8) Garcia, Spring 2010 © UCB

Control Hazard: Branching (2/9)

= We had put branch decision-making
hardware in ALU stage

o therefore two more instructions after the branch
will always be fetched, whether or not the branch
is taken

= Desired functionality of a branch

= if we do not take the branch, don’t waste any time
and continue executing normally

= if we take the branch, don’t execute any
instructions after the branch, just go to the desired
label

i
. . CS61C L29 CPU Design : Pipelining to Improve Performance Il (9) Garcia, Spring 2010 © UCB

Control Hazard: Branching (3/9)

» [nitial Solution: Stall until decision is made

= jnsert “no-op” instructions (those that accomplish
nothing, just take time) or hold up the fetch of the

next instruction (for 2 cycles).
= Drawback: branches take 3 clock cycles each

(assuming comparator is put in ALU stage)

S 4
> # CS61C L29 CPU Design : Pipelining to Improve Performance Il (10) Garcia, Spring 2010 © UCB

Control Hazard: Branching (4/9)

= Optimization #1:
= insert special branch comparator in Stage 2

= as soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

= Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only one
no-op is needed

o Side Note: This means that branches are idle in
Stages 3, 4 and 5.

i
. ~# CS61C L29 CPU Design : Pipelining to Improve Performance Il () Garcia, Spring 2010 © UCB

Control Hazard: Branching (5/9)

Time (clock cycles)

oY=Yo |

Instr 1

Instr 2

Instr 3

Reg

YInstr 4

Branch com:para:tor moved to Decode stoge

S 4
. . CS61C L29 CPU Design : Pipelining to Improve Performance Il (12) Garcia, Spring 2010 © UCB

Control Hazard: Branching (6/9)

| = User inserting no-op instruction
n Time (clock cycles)
pu— N

fReg:

[1s |

1w

Garcia, Spring 2010 © UCB

Control Hazard: Branching (7/9)
| = Controller inserting a single bubble

fReg:

n Time (clock cycles)
H H > ; E

[1s |

Impact: 2 clock cycles per branch instruction = slow

__ ...story about engineer, physicist, mathematician asked to
J// build a fence around a flock of sheep using minimal fence...

Control Hazard: Branching (8/9)

= Optimization #2: Redefine branches

= Old definition: if we take the branch, none of the
instructions after the branch get executed by
accident

= New definition: whether or not we take the

branch, the single instruction immediately
following the branch gets executed (called the

)

= The term means
we always execute inst after branch

~ = This optimization is used with MIPS

// : o 4
3 ."‘ 7 l'
! Y V&
- - . -

Control Hazard: Branching (9/9)

= Notes on

= Worst-Case Scenario: can always put a no-op in
the branch-delay slot

= Befter Case: can find an instruction preceding the
branch which can be placed in the branch-delay

slot without affecting flow of the program

- re-ordering instructions is a common method of
speeding up programs

- compiler must be very smart in order to find
instructions to do this

- usually can find such an instruction at least 50% of
the time

- Jumps ql_so have a delay slot...

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch
or $8, $9 ,$10 add $1 ,$2,$3

add $1 ,s$2,8$3 sub $4, $5,$6

sub $4, $5,$6 beqg $1, $4, Exit

 beq $1, $4, Exit” jor 88, $9 ,310

xor S$10, $1,$11 xor S$10, $1,$11

Exit:

Garcia, Spring 2010 © UCB

Data Hazards (1/2)

= Consider the following sequence of
instructions

add $t0, S$tl1l, St2

sub $t4, $t0 ,$t3
and $t5, St0 ,$t6
or $t7, $t0 ,$t8
xor $t9, S$StO0 ,S$tl0

.
) . CS61C L29 CPU Design : Pipelining to Improve Performance Il (18)

Garcia, Spring 2010 © UCB

Data Hazards (2/2)

= Data-flow backward in time are hazards

Time (clock cycles)

IF

add 510,$t1,$t2

sub $t4,510,$t3

and $t5,510,$t6

or $t7, 10,$t8

xor $t9,5t0,%t10

y ¥ £ O O
2 CS61C L29 CPU Design : Pipelining to Improve Performancé Il (19)

Reg

Garcia, Spring'2010 © UCB

Data Hazard Solution: Forwarding

" Forward result from one stage to another
IF ID/RF_ X : MEM: wB: : 5
add $10,$t1,$t2 *éEReg : 1 mE

sub $t4,5t0,6t3 18

and $t5,5t0,$t6

or $t7,5t0,$t8

xor $t9,5t0,$t10

f// “or” hazard solved by register hardware
A - .

v
. .~ CS61C L29 CPU Design : Pipelining to Improve Performance Il (20) Garcia, Spring 2010 © UCB

Data Hazard: Loads (1/4)

 Dataflow backwards in time are hazards

Iw $5t0,0($t1)| 1

sub $t3,

Ex

Reg |:

52

15 |

e Can't solve all cases with forwarding

e Must stall instruction dependent on load, then
._ forward (more hardware)

M A y
Y

==~ < CS6ICL29 CPU Design : Pipelining fo Improve Performance Il (21) Garcia, Spring 2010 © UCB

Data Hazard: Loads (2/4)

e Hardware stalls pipeline
e Called “interlock”

IF ID/RF

lw $t0, 0($t1) 1$ et

sub $t3,5t0,t2. [©

and $t5,5t0,5t4

or $17,50,5t6

//’ & 1/,’
y Y /
O 4.

. SZ . ¥

Garcia, Spring 2010 © UCB

Data Hazard: Loads (3/4)

» Instruction slot after a load is called “load
delay slot”

= |f that instruction uses the result of the load,
then the hardware interlock will stall it for one

cycle.

= |f the compiler puts an unrelated instruction in
that slot, then no stall

= Letling the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code
2) space)

s - '
Q&
*“ -~) CS6IC 129 CPU Design : Pipelining to Improve Performance Il (23) Garcia, Spring 2010 © UCB

Data Hazard: Loads (4/4)

= Stall is equivalent to nop

Iw 510, 0($t1) |

nop

sub $t3,50,$t2

and $t5,5t0,$t4

or $t7,5t0,%t6

S 4
> .~ CS61C L29 CPU Design : Pipelining to Improve Performance Il (24) Garcia, Spring 2010 © UCB

Peer Instruction

1) Thanks to pipelining, | have
took me to wash my one shirt.

2) Longer pipelines are
~ perstage & a faster clock).

QL2
. ORI

s CS61C L29 CPU Design : Pipelining to Improve Performance Il (25)

it

(since less work

Garcia, Spring 2010 © UCB

“And in Conclusion..”

= Pipeline challenge is hazards

= Forwarding helps w/many data hazards
= Delayed branch helps with control hazard in 5
stage pipeline
= Load delay slot / interlock necessary
= More aggressive performance:

= Superscalar
= Qut-of-order execution

S 4
> ~# CS61C L29 CPU Design : Pipelining to Improve Performance Il (26) Garcia, Spring 2010 © UCB

Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

= The slides will appear in the order they would
have in the normal presentation

)

y _/f § o
==~ <", CS6ICL29 CPU Design : Pipelining to Improve Performance Il (27) Garcia, Spring 2010 © UCB

Historical Trivia

= First MIPS design did not interlock and stall on
load-use data hazard

= Real reason for name behind MIPS:

Microprocessor without
Interlocked

Pipeline
Stages

= Word Play on acronym for
Millions of Instructions Per Second,

also called MIPS

5 //' 4 g
==~ <", (CS6ICL29 CPU Design : Pipelining to Improve Performance Il (28) Garcia, Spring 2010 © UCB

Pipeline Hazard: Matching socks in later load

I

3030 30 30 30 30 30

'ﬁ?k
‘i?k

J‘T}f A
= A depends on D; stall since folder tied up; Note this is much different

from processor cases so far. We have not had a earlier instruction

77 7 depend on a later one.
\ A (7 / /

CS61C L29 CPU Design : Pipelining to Improve Performance Il (29) Garcia, Spring 2010 © UCB

Out-of-Order Laundry: Don’t Wait

6IPM 7 8 9 10 11 12 (ZAM

|)
3030 3030 30 30 30 Time

A

= A depends on D; rest continue; need more
(,/ resources to allow out-of-order

*‘/‘ - CS61C L29 CPU Design : Pipelining to Improve Performance i (30) Garcia, Spring 2010 © UCB

Superscalar Laundry: Parallel per stage

6 PM 7 8 9 10 11 12 (ZAM

3030303030 Time

A q; & (light clothing)

I5)s: & (dark clothing)
“ﬁ7k (very dirty clothing)
D (J5)& A (light clothing)
5] A (dark clothing)
| (@ & (very dirty clothing)

= More resources, HW to match mix of parallel
"1/ tasks?

== -~ CS6ICL29 CPU Design : Pipelining fo Improve Performance Il (31) Garcia, Spring 2010 © UCB

Superscalar Laundry: Mismatch Mix
ey B Z B O A0 12 1 2AN.

| I]
30 30 30 30 30 30 30 Time

ight clothing)

155 A
“‘1‘7&

B (Jo)& A (light clothing)
i5)s; A (dark clothing)
084 .
Io (544 (light clothing)

ﬁ;? Task mix underutilizes extira resources

5 y &
==~ <", (CS6ICL29 CPU Design : Pipelining to Improve Performance Il (32) Garcia, Spring 2010 © UCB

Peer Instruction (1/2)

Assume 1 instr/clock, delayed branch, 5 stage
Ialpellne, forwarding, interlock on unresolve

oad hazards (after 103 loops, so pipeline full)

Loop: 1w t0, 0($sl)
addu t0, $t0, $s2
SW St0, 0(Ssl)
addiu $sl, $sl, -4
bne sl, Szero, Loop
nop

How many pipeline stages (clock cycles) per
loop iteration to execute this code?

Peer Instruction Answer (1/2)

Fupelme, forwardm mtenock on unresolv|<|ag

ad hazards. 10? iferations, so pipeline fu

Loop:{ lw - @ 8 lﬁzard so stall)

~addu Ss2
SW $t0 1)
" addiu S$sl, $sl1, -4

" bne $s1, Szero, Loop

' nop

delayed brancp SO ex C. no

= How ma plpe ine stages clock es per
loop iteration to execute this code*

1 2 3 4 5 6 7 8 9 10

/¥ g
> .~ CS61C L29 CPU Design : Pipelining to Improve Performance Il (34) Garcia, Spring 2010 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
ipeline, forwarding, interlock on unresolve
oad hazards (after 102 loops, so pipeline full).

Loop: 1w $tO0,
addu $tO,
sSwW S$to,
addiu $s1,
bne Ssl,
nop

How many pipeline stages (clock cycles) per
| loop iteration to execute this code?

HOooJdoUld WN K

Peer Instruction (2/2) How long to execute?

 Rewrite this code to reduce clock cxcles

(no hazard since extra cycle)
Loop: 1. 1w 0(Ssl)
5> addiu N S$sl, -4
3_addu $t0, 582
4 bne Ssl, ro, Loop
5 sw $t0, +4($sl)

(modified sw to put past addiu)

= How many pipeline stages (clock cycles) ci)er
loop iteration o execute your revised code?
(assume pipeline is full)

1 2 3 4 5 6 7 8 9 10

/¥ g
> ~# CS61C L29 CPU Design : Pipelining to Improve Performance Il (36) Garcia, Spring 2010 © UCB

