
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 29 – CPU Design :
Pipelining to Improve Performance II

 2010-04-07

Cal researcher Marty Banks has
put together a system to help
with the eyestrain many viewers
experience with 3D content on a
small screen – the vergence /
accomodation conflict.

Lecturer SOE
Dan Garcia

www.technologyreview.com/computing/24976

CS61C L29 CPU Design : Pipelining to Improve Performance II (2) Garcia, Spring 2010 © UCB

Review

  Pipelining is a BIG idea
  Optimal Pipeline

  Each stage is executing part of an instruction each
clock cycle.

  One instruction finishes during each clock cycle.
  On average, execute far more quickly.

  What makes this work?
  Similarities between instructions allow us to use

same stages for all instructions (generally).
  Each stage takes about the same amount of time

as all others: little wasted time.

CS61C L29 CPU Design : Pipelining to Improve Performance II (3) Garcia, Spring 2010 © UCB

Problems for Pipelining CPUs
  Limits to pipelining: Hazards prevent next

instruction from executing during its designated
clock cycle
  Structural hazards: HW cannot support some

combination of instructions (single person to fold and
put clothes away)

  Control hazards: Pipelining of branches causes later
instruction fetches to wait for the result of the branch

  Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

  These might result in pipeline stalls or “bubbles”
in the pipeline.

CS61C L29 CPU Design : Pipelining to Improve Performance II (4) Garcia, Spring 2010 © UCB

Read same memory twice in same clock cycle

 I$	

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Structural Hazard #1: Single Memory (1/2)

CS61C L29 CPU Design : Pipelining to Improve Performance II (5) Garcia, Spring 2010 © UCB

Structural Hazard #1: Single Memory (2/2)

  Solution:
  infeasible and inefficient to create second memory
  (We’ll learn about this more friday/next week)
  …so simulate this by having two Level 1 Caches
  (a temporary smaller [of usually most recently used]

copy of memory)

  have both an L1 Instruction Cache and
an L1 Data Cache

  need more complex hardware to control when
both caches miss

CS61C L29 CPU Design : Pipelining to Improve Performance II (6) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?

 I$	

sw

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (7) Garcia, Spring 2010 © UCB

Structural Hazard #2: Registers (2/2)

  Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the

time of ALU stage
  Write to Registers during first half of each clock cycle
  Read from Registers during second half of each clock

cycle

2) Build RegFile with independent read and write
ports

  Result: can perform Read and Write during
same clock cycle

CS61C L29 CPU Design : Pipelining to Improve Performance II (8) Garcia, Spring 2010 © UCB

Control Hazard: Branching (1/9)

Where do we do the compare for the branch?

 I$	

beq

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (9) Garcia, Spring 2010 © UCB

Control Hazard: Branching (2/9)

  We had put branch decision-making
hardware in ALU stage
  therefore two more instructions after the branch

will always be fetched, whether or not the branch
is taken

  Desired functionality of a branch
  if we do not take the branch, don’t waste any time

and continue executing normally
  if we take the branch, don’t execute any

instructions after the branch, just go to the desired
label

CS61C L29 CPU Design : Pipelining to Improve Performance II (10) Garcia, Spring 2010 © UCB

Control Hazard: Branching (3/9)

  Initial Solution: Stall until decision is made
  insert “no-op” instructions (those that accomplish

nothing, just take time) or hold up the fetch of the
next instruction (for 2 cycles).

  Drawback: branches take 3 clock cycles each
(assuming comparator is put in ALU stage)

CS61C L29 CPU Design : Pipelining to Improve Performance II (11) Garcia, Spring 2010 © UCB

Control Hazard: Branching (4/9)

  Optimization #1:
  insert special branch comparator in Stage 2
  as soon as instruction is decoded (Opcode

identifies it as a branch), immediately make a
decision and set the new value of the PC

  Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only one
no-op is needed

  Side Note: This means that branches are idle in
Stages 3, 4 and 5.

CS61C L29 CPU Design : Pipelining to Improve Performance II (12) Garcia, Spring 2010 © UCB

Control Hazard: Branching (5/9)

Branch comparator moved to Decode stage.

 I$	

beq

Instr 1

Instr 2

Instr 3

Instr 4
A

LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (13) Garcia, Spring 2010 © UCB

Control Hazard: Branching (6/9)

  User inserting no-op instruction

add

beq

nop

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A

LU
	

Reg	
 D$	
 Reg	
 I$	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

Impact: 2 clock cycles per branch instruction ⇒ slow

lw

bub
ble

bub
ble

bub
ble

bub
ble

CS61C L29 CPU Design : Pipelining to Improve Performance II (14) Garcia, Spring 2010 © UCB

Control Hazard: Branching (7/9)

  Controller inserting a single bubble

add

beq

lw

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A
LU
	

 I$	
 Reg	
 D$	
 Reg	

A

LU
	

Reg	
 D$	
 Reg	
 I$	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

Impact: 2 clock cycles per branch instruction ⇒ slow
…story about engineer, physicist, mathematician asked to

build a fence around a flock of sheep using minimal fence…

CS61C L29 CPU Design : Pipelining to Improve Performance II (15) Garcia, Spring 2010 © UCB

Control Hazard: Branching (8/9)

  Optimization #2: Redefine branches
  Old definition: if we take the branch, none of the

instructions after the branch get executed by
accident

  New definition: whether or not we take the
branch, the single instruction immediately
following the branch gets executed (called the
branch-delay slot)

  The term “Delayed Branch” means
we always execute inst after branch

  This optimization is used with MIPS

CS61C L29 CPU Design : Pipelining to Improve Performance II (16) Garcia, Spring 2010 © UCB

Control Hazard: Branching (9/9)

  Notes on Branch-Delay Slot
  Worst-Case Scenario: can always put a no-op in

the branch-delay slot
  Better Case: can find an instruction preceding the

branch which can be placed in the branch-delay
slot without affecting flow of the program
  re-ordering instructions is a common method of

speeding up programs
  compiler must be very smart in order to find

instructions to do this
  usually can find such an instruction at least 50% of

the time
  Jumps also have a delay slot…

CS61C L29 CPU Design : Pipelining to Improve Performance II (17) Garcia, Spring 2010 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L29 CPU Design : Pipelining to Improve Performance II (18) Garcia, Spring 2010 © UCB

Data Hazards (1/2)

  Consider the following sequence of
instructions

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

CS61C L29 CPU Design : Pipelining to Improve Performance II (19) Garcia, Spring 2010 © UCB

Data Hazards (2/2)

  Data-flow backward in time are hazards

sub $t4,$t0,$t3
A

LU
	

I$	
 Reg	
 D$	
 Reg	

and $t5,$t0,$t6

A
LU
	

I$	
 Reg	
 D$	
 Reg	

or $t7,$t0,$t8 I$	

A
LU
	

Reg	
 D$	
 Reg	

xor $t9,$t0,$t10

A
LU
	

I$	
 Reg	
 D$	
 Reg	

add $t0,$t1,$t2
IF ID/RF EX MEM WB A

LU
	
I$	
 Reg	
 D$	
 Reg	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L29 CPU Design : Pipelining to Improve Performance II (20) Garcia, Spring 2010 © UCB

Data Hazard Solution: Forwarding
  Forward result from one stage to another	

sub $t4,$t0,$t3

A
LU
	

I$	
 Reg	
 D$	
 Reg	

and $t5,$t0,$t6

A
LU
	

I$	
 Reg	
 D$	
 Reg	

or $t7,$t0,$t8 I$	

A
LU
	

Reg	
 D$	
 Reg	

xor $t9,$t0,$t10

A
LU
	

I$	
 Reg	
 D$	
 Reg	

add $t0,$t1,$t2
IF ID/RF EX MEM WB A

LU
	
I$	
 Reg	
 D$	
 Reg	

 "“or” hazard solved by register hardware	

CS61C L29 CPU Design : Pipelining to Improve Performance II (21) Garcia, Spring 2010 © UCB

Data Hazard: Loads (1/4)
  Dataflow backwards in time are hazards

•  Can’t solve all cases with forwarding
•  Must stall instruction dependent on load, then

forward (more hardware)	

sub $t3,$t0,$t2
A

LU
	

I$	
 Reg	
 D$	
 Reg	

lw $t0,0($t1)
IF ID/RF EX MEM WB A

LU
	
I$	
 Reg	
 D$	
 Reg	

CS61C L29 CPU Design : Pipelining to Improve Performance II (22) Garcia, Spring 2010 © UCB

Data Hazard: Loads (2/4)
•  Hardware stalls pipeline

•  Called “interlock”	

sub $t3,$t0,$t2

A
LU
	

I$	
 Reg	
 D$	
 Reg	
bub
ble

and $t5,$t0,$t4

A
LU
	

I$	
 Reg	
 D$	
 Reg	
bub
ble

or $t7,$t0,$t6 I$	

A
LU
	

Reg	
 D$	
bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WB A

LU
	
I$	
 Reg	
 D$	
 Reg	

CS61C L29 CPU Design : Pipelining to Improve Performance II (23) Garcia, Spring 2010 © UCB

Data Hazard: Loads (3/4)

  Instruction slot after a load is called “load
delay slot”

  If that instruction uses the result of the load,
then the hardware interlock will stall it for one
cycle.

  If the compiler puts an unrelated instruction in
that slot, then no stall

  Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code
space)

CS61C L29 CPU Design : Pipelining to Improve Performance II (24) Garcia, Spring 2010 © UCB

Data Hazard: Loads (4/4)

  Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$	

A
LU
	

Reg	
 D$	

lw $t0, 0($t1) A
LU
	
I$	
 Reg	
 D$	
 Reg	

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LU
	
I$	
 Reg	
 D$	
 Reg	

A
LU
	
I$	
 Reg	
 D$	
 Reg	

nop

CS61C L29 CPU Design : Pipelining to Improve Performance II (25) Garcia, Spring 2010 © UCB

1)  Thanks to pipelining, I have reduced the time it
took me to wash my one shirt.

2)  Longer pipelines are always a win (since less work
per stage & a faster clock).

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L29 CPU Design : Pipelining to Improve Performance II (26) Garcia, Spring 2010 © UCB

“And in Conclusion..”

  Pipeline challenge is hazards
  Forwarding helps w/many data hazards
  Delayed branch helps with control hazard in 5

stage pipeline
  Load delay slot / interlock necessary

  More aggressive performance:
  Superscalar
  Out-of-order execution

CS61C L29 CPU Design : Pipelining to Improve Performance II (27) Garcia, Spring 2010 © UCB

Bonus slides

  These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

  The slides will appear in the order they would
have in the normal presentation

CS61C L29 CPU Design : Pipelining to Improve Performance II (28) Garcia, Spring 2010 © UCB

 Historical Trivia

  First MIPS design did not interlock and stall on
load-use data hazard

  Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages
  Word Play on acronym for

Millions of Instructions Per Second,
also called MIPS

CS61C L29 CPU Design : Pipelining to Improve Performance II (29) Garcia, Spring 2010 © UCB

Pipeline Hazard: Matching socks in later load

  A depends on D; stall since folder tied up; Note this is much different
from processor cases so far. We have not had a earlier instruction
depend on a later one.

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30

CS61C L29 CPU Design : Pipelining to Improve Performance II (30) Garcia, Spring 2010 © UCB

Out-of-Order Laundry: Don’t Wait

  A depends on D; rest continue; need more
resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A
30 30 30 30 30 30 30

E

F

bubble

CS61C L29 CPU Design : Pipelining to Improve Performance II (31) Garcia, Spring 2010 © UCB

Superscalar Laundry: Parallel per stage

  More resources, HW to match mix of parallel
tasks?

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

30 30 30 30 30

CS61C L29 CPU Design : Pipelining to Improve Performance II (32) Garcia, Spring 2010 © UCB

Superscalar Laundry: Mismatch Mix

  Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM 6 PM 7 8 9 10 11 1

Time 30 30 30 30 30 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L29 CPU Design : Pipelining to Improve Performance II (33) Garcia, Spring 2010 © UCB

Peer Instruction (1/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full)"
Loop: lw $t0, 0($s1)

 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop"

• How many pipeline stages (clock cycles) per
loop iteration to execute this code?"

1
2
3
4
5
6
7
8
9
10

CS61C L29 CPU Design : Pipelining to Improve Performance II (34) Garcia, Spring 2010 © UCB

Peer Instruction Answer (1/2)
  Assume 1 instr/clock, delayed branch, 5 stage

pipeline, forwarding, interlock on unresolved
load hazards. 103 iterations, so pipeline full.

Loop: lw $t0, 0($s1)
 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop

  How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1."
2. (data hazard so stall)"

3."
4."
5."
6."

(delayed branch so exec. nop)"7."

1 2 3 4 5 6 7 8 9 10

CS61C L29 CPU Design : Pipelining to Improve Performance II (35) Garcia, Spring 2010 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible. "
Loop: lw $t0, 0($s1)

 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addiu $s1, $s1, -4
 bne $s1, $zero, Loop
 nop"

• How many pipeline stages (clock cycles) per
loop iteration to execute this code?"

1
2
3
4
5
6
7
8
9
10

CS61C L29 CPU Design : Pipelining to Improve Performance II (36) Garcia, Spring 2010 © UCB

Peer Instruction (2/2) How long to execute?

  How many pipeline stages (clock cycles) per
loop iteration to execute your revised code?
(assume pipeline is full)

• Rewrite this code to reduce clock cycles
per loop to as few as possible:"
Loop: lw $t0, 0($s1)

 addiu $s1, $s1, -4
 addu $t0, $t0, $s2
 bne $s1, $zero, Loop
 sw $t0, +4($s1)"

(no hazard since extra cycle)"
1."

3."
4."
5."

2."

(modified sw to put past addiu)"

1 2 3 4 5 6 7 8 9 10

