
CS 61C
Fall 2006

Week 3 (9/13)
More C & Memory Management
Scott Beamer (cs61c-tb)

Quick Array Problem
Fill in the function to make it compute the dot product of a•b
int dotProduct(int[] a, int[] b, int length) {

}

Dynamic Memory Allocation Summary
• int sizeof(datatype) - returns the number of bytes needed to hold datatype
• void* malloc(int numBytes) - returns address of dynamically allocated block that is 
numBytes long, or returns 0 if it can’t satisfy that request

• void free(void *ptr) - releases the memory that ptr points to

Summary of struct

• Composes simpler data types to make data structures

• Can get an element by: structInstanceName.elementName

• If passed by a pointer, ptrName->elementName instead of (*ptrName).elementName

Summary of typedef
• typedef searchFor replaceWith;

• For declarations, replaces searchFor with replaceWith

Linked List Example
typedef char *String;

typedef struct Node {

 String value;

 struct Node *next;

} NodeStruct;

typedef NodeStruct *List;

List cons (String s, List list) {

 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);

 strcpy(node->value, s);

 node->next = list;

 return node;

}

Summary of union

• Used to make more general data types (syntax is like struct)

• Only 1 type is valid at a given time and it is programmer’s responsibility to know which

• Often another variable is used to hold which type is there

 union Number {

 float fVal;

 double dVal;

} realNum;

// let numType hold realNum’s type

if(numType == FLOAT)

 realNum.fVal = 3.14f;

else if(numType == DOUBLE)

 realNum.dVal = 3.14;

cs61c-taSpring 2010
Week 3 (2/2)

searchFor;replaceWith



General Linked List Problem
Change the declaration from the Linked List Example to handle int’s in addition to Strings 
by using unions. Make a function that sums the values of the elements assuming they are 
ints.

int sumList(List list) {

 

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x28

0x2c

0x30

0x34

0x38

0x3c

0x24

0x40

Request Best-fit First-fit Next-fit

Memory Allocation Problem
Fill in the table, listing the starting address that each request will be 
satisfied by. Assume that:

• The diagram on the left is the initial conditions

• Next-fit will start originally from the beginning

• All schemes will choose the lowest address in the selected range

Basic C Memory Management (4 segments)

• Stack - grows down - holds local variables

• Heap - grows up - where malloc() requests space 

• Static Data - fixed size - holds global variables

• Code - fixed size - immutable - where instructions for program are
3 Memory Allocation Schemes

• Best-fit - choose the smallest block that satisfies the request

• First-fit - choose the first block that satisfies the request starting from the front

• Next-fit - choose the first block that satisfies the request starting from the 
where the last request finished

code

static data

heap

stack

0x0000

0xffff

4 bytes

4 bytes

16 bytes

8 bytes

12 bytes


