X[More C & Memory Management

Nlflgl AN Scott Beamer (cs61c-ta)

Quick Array Problem

Fill in the function to make it compute the dot product of aeb
int dotProduct (int[] a, int[] b, int length) {

}

Dynamic Memory Allocation Summary

- int sizeof (datatype) - returns the number of bytes needed to hold datatype

- void* malloc (int numBytes) - returns address of dynamically allocated block that is
numBytes long, or returns o if it can’t satisfy that request

- void free (void *ptr) - releases the memory that ptr points to

Summary of struct

« Composes simpler data types to make data structures

« Can get an element by: structinstanceName.elementName

« If passed by a pointer, ptrName->elementName instead of (*ptrName).elementName

Summary of typedef
. typedef replaceWith searchFor;

« For declarations, replaces searchrFor with replacewith

Linked List Example

typedef char *String;

typedef struct Node ({
String value;
struct Node *next;

} NodeStruct;

typedef NodeStruct *List;

List cons (String s, List list) {

List node = (List) malloc(sizeof (NodeStruct)) ;
node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

}

Summary of union

« Used to make more general data types (syntax is like struct)

« Only 1 type is valid at a given time and it is programmer’s responsibility to know which
« Often another variable is used to hold which type is there

union Number { // let numType hold realNum’s type
float fVval; if (numType == FLOAT)
double dval; realNum.fVal = 3.14f;

} realNum; else if (numType == DOUBLE)

realNum.dval = 3.14;

General Linked List Problem
Change the declaration from the Linked List Example to handle int’s in addition to Strings
by using unions. Make a function that sums the values of the elements assuming they are

ints.

int sumList (List list) {

stack

f

heap

static data

code

0x00
0x04
0x08
0x0c
0x10
0x14
0x18
Ox1lc

T 0x0000

" 0x20

0x24
0x28
0x2c
0x30
0x34
0x38
0x3c
0x40

Oxffff
Basic C Memory Management (4 segments)
- Stack - grows down - holds local variables
- Heap - grows up - where malloc() requests space
- Static Data - fixed size - holds global variables
- Code - fixed size - immutable - where instructions for program are
3 Memory Allocation Schemes
- Best-fit - choose the smallest block that satisfies the request
- First-fit - choose the first block that satisfies the request starting from the front
- Next-fit - choose the first block that satisfies the request starting from the
where the last request finished

Memory Allocation Problem

Fill in the table, listing the starting address that each request will be
satisfied by. Assume that:

« The diagram on the left is the initial conditions

« Next-fit will start originally from the beginning

« All schemes will choose the lowest address in the selected range

Request Best-fit First-fit Next-fit

4 bytes

4 bytes

16 bytes

8 bytes

12 bytes

