Week 7 (3/2)

Float Introduction

- Floats were made to increase the range of values to include very small and large reals
- This added range comes at the cost of less precision
 - Remember: N bits represents only 2^N things, but no more
- Done with normalized binary numbers (only one nonzero bit left of binary point)
- IEEE 754 standard: (-1)^{sign} x 1.significand x 2^(exponent-127)

sign	exponent	significand	
1 bit	8 bits	23 bits	

- Notice: Implicit 1 to the left of binary point, significand is only to the right
- Exponent uses biased notation (Range of [-127, +128] shifted to [0, 255]). Why?
- Floats also use Sign & Magnitude. Why is this ok for floats?

Special Cases for Floats

Exponent	Significand	Meaning
0	0	zero
0	non-zero	denormalized
1-254 (MAX-1)	anything	float
255 (MAX)	0	+/- infinity
255 (MAX)	non-zero	NaN (Not a Number)

Denormalized Numbers

- Were made to fill in between 2⁻¹²⁶ and 0
- Denormalized comes from number not being normalized (there is no longer a 1 before binary point)
- Has an implicit exponent of -126 and no longer has an implicit 1 in mantissa
- Thus they take the form: $(-1)^{sign} \times 0.significand \times 2^{-126}$

Doubles

- Were made to increase the precision and the range of floats
- Same format as floats just with more bits and and a MAX of 2047
- Double format: (-1)^{sign} x 1.significand x 2^(exponent-1023)

sign	exponent	significand
1 bit	11 bits	52 bits

Floating Point Questions

- What is the largest float < infinity?
- What is the smallest positive float?
- Say you wanted to make the float in \$t0 8 times bigger, and all you had available were add, addi, and sll. How would you do it? (Assuming the float $< 2^{124}$)

MAL vs. TAL

- TAL (True Assembly Language): MIPS with no pseudo-instructions and strict enforcement of the ISA
 - TAL has a direct 1:1 mapping with raw bits, where each TAL instruction corresponds to exactly 1 instruction the CPU will execute
- MAL (MIPS Assembly Language): MIPS where pseudo-instructions are allowed
 - An instruction with improper arguments is also a pseudo-instruction (add \$t0, \$t0, 2)
 - Some MAL instructions correspond to multiple instructions when assembled
 - Done to increase programmer (or compiler) productivity

Assembling Exercise

• Be the first pass of the assembler and convert the following MAL instructions to TAL:

MAL		TAL
li	\$s0, 0xdeadbeef	
add	\$t2, \$t3, 0xcafebebe	
bge	\$s2, -3, exit (exit is PC+8)	
swap	\$tO, \$t1	
lw	\$t0, \$t1(\$t2)	

• How would you implement the *inc* instruction? (inc $rt,imm \rightarrow R[rt] = R[rt] + imm$)

• How about the *freeze* instruction? Once the processor executes freeze, it will never execute anything else.