
UC Berkeley

CS61C

C Crash Course

helloworld.c

#include <stdio.h>

int main(int argc, char *argv[]) {

printf(“hello world!\n”);

return 0;

}

hello world!

include

#include <stdio.h>

 Use the #include statement to include other C files

 Common includes are stdio.h, stdlib.h, math.h

 Generally include .h files to get function and variable

declarations

#include <stdio.h>

vs.

#include “stdio.h”

 “” looks through current directory, while <> looks through

system library folders

main

int main(int argc, char *argv[]) {

/* Code */

}

 main() is a special function where execution of a C

program starts.

 argc and argv are automatically passed as arguments

 argc is the number of arguments

 argv is an array containing the arguments

printf()

 printf()prints data to the screen

 Takes a variable number of arguments

 First argument is a format string

 Other arguments are optional, are inserted into the format

string in the place of special sequences of characters

printf()
printf(“hello world”);

hello world

printf(“5 == %d”, 5);

5 == 5

printf(“Char: %c, Double: %f”, „a‟, 1.2);

Char: a, Double: 1.2

printf(“no newline”);

printf(“causes a run-on”);

no newlinecauses a run-on

printf(“line1\nline2”);

line1

line2

Variables

 A variable is a named space in memory to store data

 In C, variables need to be declared before you can do

anything with them

 After being declared, a variable is usually initialized to

some initial value before being used

 A variable has a type and a name

int int1; // declares an integer named int1

double d; // declares a double

int1 = 5; // int1 is given the value 5

int int2 = 3; // int2 is declared and initialized

// in one line

C Keywords
Variables/functions/structs may not be named after any keyword:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Arithmetic Operators
int x = 3, y = 4 + 4, z = 12 / 3;

printf(“x: %d, y: %d, z: %d”, x, y, z);

x: 3, y: 8, z: 4

z = x + y; // z is now 13

z = x + y * y; // z is now 67

double d;

d = x / y; // d is 0, C truncates integer division

d = ((double) x) / y; // now d is .375

Key points to keep in mind:

 Numbers in C have min/max values, unlike Scheme

 Remember to cast before dividing if you don’t want integer

truncation!

Bitwise Operators
& bitwise AND << left shift

| bitwise OR >> right shift

^ bitwise XOR ~ bitwise complement

011010101 00101101

&000000011 |11110000

000000001 11111101

10000001 << 3 = 00001000

10000001 >> 3 = 00010000 or 11110000 (depending on

whether 10000001 was a signed number or not)

Arrays

 An array is a contiguous segment of memory filled with

values of the same type

 Arrays in C must be given a size when declared

int arr[10]; // declares an array of size 10

arr[0] = 3; // sets first element of arr to 3

Control Statements
if(pred) {

/* code to run if pred is true */

} else {

/* code to run if pred is false */

}

if(pred1) {

/* code to run if pred1 is true */

} else if(pred2) {

/* code to run if pred2 is true */

} else {

/* code to run if neither is true */

}

Control Statements
char c;

switch(c) {

case „a‟:

printf(“a\n”);

break;

case „b‟:

printf(“b\n”);

case „c‟:

case „d‟:

printf(“after b\n”);

break

default:

printf(“error\n”);

}

Control Statements
int i = 0;

while(i < 10) {

printf(“i: %d\n”, i);

i = i + 1;

}

int j;

for(j = 0; j < 10; j = j + 1) {

printf(“j: %d\n”, j);

}

Control Statements
int i = 0;

while(1) {

if(i < 10) {

continue;

}

printf(“i reached 10!\n”);

i = i + 1;

if(i > 10) {

break;

}

}

i reached 10!

Functions

 Use functions to break a large task into manageable small

chunks

 Functions allow code to be reused (such as printf, atoi, etc.)

 Functions have a name and a return type

 Functions need to be declared and defined

 Generally happen at the same time, but not necessarily

Functions
int foo(); // declares a function foo

// definition of foo

int foo() {

return 7; // returns something of type int

}

// declare and define a function at the same time

double caster(int x) {

return (double) x;

}

Functions

 Arguments to functions are passed by value; this means that if

we pass a variable as an argument to a function, the value of

the variable is copied. Changing the copy does nothing to the

original

void foo(int arg) { arg = 10; }

int main() {

int x = 17;

foo(x);

printf(“x:%d\n”, x);

}

x:17

Pointers

 A pointer is a variable which points to data at a specific

location in memory

 A pointer has a type; this is the type of data it is pointing to

 Key to doing many interesting things in C, such as functions

that can change the value of a variable and dynamic memory

management (more on memory in lecture)

 Can have a pointer to a pointer (to a pointer to a …)

Pointers
int x = 1, y = 2, z = 3;

int *p1, *p2; // declares two pointers to ints

p1 = &x; // p1 contains the address of x

y = *p1; // * dereferences p1, so y = 1

p2 = p1; // p2 points to the same thing as p1

*p2 = 4; // x is now 4

Pointers
void swap(int x, int y) {

int tmp = x;

x = y;

x = tmp;

}

int a = 1, b = 2;

swap(a, b); // a and b did not get swapped

Pointers
void swap(int *x, int *y) {

int tmp = *x;

*x = *y;

*x = tmp;

}

int a = 1, b = 2;

swap(&a, &b); // a and b did get swapped

Structures

 Used to define compound data types

 Can contain data of different types

 Useful for organizing and packing up related data. For

example, in a 2D graphics program, might have structs to

represent a point

Structures
struct point {

int x;

int y;

};

struct point p1, p2; // declares two variables

// of type struct point

p1.x = 3; // sets x of p1 to 3

p1.y = 5; // sets y of p1 to 5

Structures

 Can typedef to shorten the type name

typedef struct point point_t;

point_t p3; // equivalent to struct point p3;

 Can use user defined types inside a struct

struct rect {

point_t ll; // lower left

point_t ur; // upper right

}

Structures

 Functions can return structures

point_t makePoint(int x, int y) {

point_t p;

p.x = x;

p.y = y;

return p;

}

 Can use user defined types inside a struct

struct rect {

point_t ll; // lower left

point_t ur; // upper right

}

Memory Management

 You need to manage your own memory in C!

 Variables can be static, local, or malloc’ed

 Static variables live in special section of program, only 1 copy

 Local variables allocated automatically when a function is

called, deallocated automatically when it returns

 Dynamic storage is managed through the function malloc()

 Malloc returns a pointer to a chunk of memory in the heap

 Use when we don’t know how big an array needs to be, or

we need a variable that doesn’t disappear when a function

returns

Memory Management
int main() {

int x = 5; // x is on the stack

// y is a pointer to a chunk of memory

// big enough to hold one int

int *y = (int *) malloc(sizeof(int));

// double is a pointer to a chunk of memory

// big enough to hold 10 doubles

double *z = (double *) malloc(10 * sizeof(double));

if(z == NULL) { exit(1);} // something went wrong...

// we can access the memory z points to

// as though z was an array

z[5] = 1.1;

}

Memory Management

 What happens to memory given out by malloc when we’re

done with it?

 Answer: nothing, unless we do something about it!

 Need to say we’re done with a chunk of memory when we

don’t need it anymore

 Use function free() to free memory. free() takes a pointer

given out by malloc, and frees the memory given out so it

can be used again

 Forgetting to call free is a cause of a significant percentage of

memory leaks…

Memory Management
// arrays made without malloc are freed automatically

void ok() {

int arr[10];

return;

}

/* arr is never freed; since function returned, we lost

the only pointer we had to the memory we malloc‟ed! */

void leaky() {

int *arr = (int *) malloc(10*sizeof(int));

return;

}

Useful Data Structures

 Linked List

// example with a linked list of integers

struct node {

int node_value;

struct node *next; // pointer to next node

};

typedef struct node node_t; // optional

node_t *head = (node_t *) malloc(sizeof(node_t));

head->value = 0;

head->next = (node_t *) malloc(sizeof(node_t));

Useful Data Structures

 Binary Tree

// example with a linked list of integers

struct node {

int node_value;

struct node *left; // pointer to left child

struct node *right; // pointer to right child

};

typedef struct node node_t; // optional

node_t *head = (node_t *) malloc(sizeof(node_t));

head->value = 0;

head->left = (node_t *) malloc(sizeof(node_t));

head->right = (node_t *) malloc(sizeof(node_t));

I/O

 printf() is your all-purpose output function to the console

 Reading from standard in:

 getchar() – returns the next character typed in

 gets(char *buf) – reads one line into the given buffer

 Opening a file:

FILE *f = fopen(“foo.bar”, “rw”)

 Reading/writing from a file:

int next_char = getc(f);

putc(„a‟, f);

 Remember to close your files when done

fclose(f);

