
CS61C Spring 2010 Week 3 - Memory Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

Warm Up

1. How can we find the size of a given data type in bytes?

sizeof(type)

2. How do you use typedef? Why use typedef?

typedef <type 1> <type 2>; // <type 2> is now equivalent to <type 1>

We use typedef to give new names to existing data types; for example, typedef-ing size_t

to be an unsigned int because size_t is more descriptive.

3. Give a call to malloc that will return a pointer to an array of 17 int*s.

(int **) malloc(17 * sizeof(int *));

Struct Practice

1. We want to add an inventory system to a text adventure game so that the player can collect

items. First, we’ll implement a bag data structure that holds items in a linked list. Each

item_t has an associated weight, and each bag_t has a max_weight that determines its

holding capacity (see the definitions below). In the left text area for item_node_t, define the

necessary data type to serve as the nodes in a linked list of items, and in the right text area,

add any necessary fields to the bag_t definition.

typedef struct item {

 int weight;

 // other fields not shown

} item_t;

2. Complete the add_item() function, which should add item into bag only if adding the item

would not cause the weight of the bag contents to exceed the bag’s max_weight. The function

should return 0 if the item could not be added, or 1 if it succeeded. Be sure to update the

bag’s current_weight. You do not need to check if malloc() returns NULL. Insert the new item

into the list wherever you wish.

typedef struct bag {

int max_weight;

int current_weight;

// add other fields necessary

// (b) FILL IN HERE

 item_node_t *items;

} bag_t;

typedef struct item_node {

// (a) FILL IN HERE

 item_t *item;

 struct item_node *next;

} item_node_t;

CS61C Spring 2010 Week 3 - Memory Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

int add_item(item_t *item, bag_t *bag) {

if (bag->current_weight + item->weight > bag->max_weight) {

 return 0;

 }

 item_node_t *new_node = (item_node_t *) malloc(sizeof(item_node_t));

// Add more code below…

new_node->item = item;

new_node->next = bag->items;

 bag->items = new_node;

 bag->current_weight += item->weight;

 return 1;

}

3. Finally, we want an empty_bag() function that frees the bag’s linked list but NOT the

memory of the items themselves and NOT the bag itself. The bag should then be “reset”,

ready for add_item. Assume that the operating system immediately fills any freed memory

with garbage. Fill in the functions below.

void empty_bag(bag_t *bag) {

 free_contents(bag->items);

 // FILL IN HERE

 bag->items = NULL;

 bag->current_weight = 0;

}

void free_contents(item_node_t *node) {

 // FILL IN HERE

 if(node->next != NULL)

 free_contents(node->next);

 free(node);

}

4. Now suppose that we care about the order of items in our bag. However, because we’re

clumsy, the only possible way for us to rearrange items is to reverse their order in the list.

void reverse_list(bag_t *bag) {

 item_node_t *head = bag->head, *new_list = NULL, *temp;

 while(head != NULL) {

 temp = head->next;

 head->next = new_list;

 new_list = head;

 head = temp;

 }

 bag->head = new_list;

}

Basic Memory Layout

 Stack - grows down - holds local variables
 Heap - grows up - where malloc() requests space
 Static Data - fixed size - holds global variables
 Code - fixed size - immutable - where instructions for program are

CS61C Spring 2010 Week 3 - Memory Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

Questions 1 and 2 refer to the C code to the

right.

1. In which memory sections (code, static,

heap, stack) do the following reside?

arg stack arr static *str heap val nowhere

2. Name a C operation that would treat arr and ptr differently: pointer assignment

3 Memory Allocation Schemes

 Best-fit - choose the smallest block that satisfies the request
 First-fit - choose the first block that satisfies the request starting from the front
 Next-fit - choose the first block that satisfies the request starting from the where the last

request finished

Exercise: Given a heap with an 16 byte capacity, generate a series of malloc()s and free()s for

which each allocation scheme fails where others may succeed.

Best-Fit:

Best fit fails, first fit succeeds:

a = malloc(7)

b = malloc(1)

c = malloc(2)

d = malloc(6)

free(a)

free(c)

e = malloc(2)

free(b)

free(d)

f = malloc(14) // best fit fails

#define val 16

char arr[] = "foo";

void foo(int arg){

char *str = (char *) malloc (val);

 char *ptr = arr;

}

CS61C Spring 2010 Week 3 - Memory Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

First-Fit:

First fit fails, best fit succeeds:

a = malloc(7)

b = malloc(7)

free(a)

c = malloc(2)

d = malloc(7) // first fit fails

Next-Fit:

Next fit fails, first fit succeeds:

a = malloc(5)

b = malloc(5)

free(a)

c = malloc(5)

d = malloc(6) // next fit fails

