
CS61C Spring 2010 Week 6 - MIPS ISA Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

The Stored Program Concept

 All programs (instructions) are just data represented by combinations of bytes!

 Any block of memory can be code. Consequently, self-modifying code is possible!

 The Program Counter (PC) is a special register (not directly accessible) which holds a

pointer to the current instruction.

Instruction Formats

MIPS instructions come in three tasty flavors!

R-Instruction format (register-to-register). Examples: addu, and, sll, jr

op code rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

See green sheet to see what registers are read from and what is written to

I-Instruction Format (register immediate) Examples: addiu, andi, bne

op code rs rt immediate

6 bits 5 bits 5 bits 16 bits

Note: Immediate is 0 or sign-extended depending on instruction (see green sheet)

J-Instruction Format (jump format) For j and jal

op code address

6 bits 26 bits

KEY: An instruction is R-Format if the op code is 0. If the opcode is 2 or 3, it is J-format.

Otherwise, it is I-format. Different R-format instructions are determined by the “funct”.

1. How many instructions are representable with this format?

64 R-type instructions

63 other instructions

127 total

2. What could we do to increase the number of possible instructions?

Many things - for example, for R-type instructions where the shamt isn't used, use that to

describe more instructions. Could delete one I-type instruction to make a second set of R-type

instructions, etc. One trade off is the hardware needs to be more complex.

CS61C Spring 2010 Week 6 - MIPS ISA Section 112/113

TA: Bing Xia cs61c-tb@imail.eecs

MIPS Addressing Modes

 We have several addressing modes to access memory (immediate not listed):
o Base displacement addressing: Adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb)
o PC-relative addressing: Uses the PC (actually the current PC plus four) and

adds the I-value of the instruction (multiplied by 4) to create an address (used by
I-format branching instructions like beq, bne)

o Pseudodirect addressing: Uses the upper four bits of the PC and concatenates a
26-bit value from the instruction (with implicit 00 lowest bits) to make a 32-bit
address (used by J-format instructions)

o Register Addressing: Uses the value in a register as memory (jr)

3. You need to jump to an instruction that is 257Mb up from the current PC. How do you do it?

(HINT: you need multiple instructions)

addi $t0, $pc, 0x10100000

jr $t0

4. Given the following MIPS code (and instruction addresses), fill in the highlighted instructions

(you’ll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $t0 | 0 | 8 | 8 | 8 | 0 | 21 |

0x002cff04: jal foo | 3 | 0xC0001 |

0x002cff08: bne $t0, $zero, loop | 5 | 8 | 0 | -0x3 |

...

0x00300004: foo: jr $ra $ra= 0x002cff08

5. What instruction is 0x00008A03?
0x00008A03 = 000000 00000 00000 10001 01000 000011

Op: 000000 -> R-type Rs: 0 (Unused)

Funct: 000011 -> sra Rt: 0

Shamt: 01000 -> 8 Rd: 17

Final instruction: sra $17, $0, 8

Bonus Question: You have four numbers: a, b, c, and d. You know five of the six pair-wise

products (ab, ac, ad, bc, bd, and cd) are 2, 3, 4, 5, and 6, but you don’t know which five. What is

the last pair-wise product?

12/5

