

CS 61C Spring 2010 TA: Long Wei

Section 115/6 Week 2 – Pointers cs61c-te@imail.eecs

Quick Review
N bits represent 2

N
 things:

How many bits do you need to represent 768 things?

10 bits

Kind men give terminal pets extra zebra yolk:

2
67

 = 128 exbi

With 8 bits, what are the bit patterns for the following? For the last row, what

is the decimal value of the given bit pattern?

 Unsigned Sign & Magnitude One’s Complement Two’s Complement
-1 No can do 1000 0001 1111 1110 1111 1111
MAX 1111 1111 0111 1111 0111 1111 0111 1111
MIN 0000 0000 1111 1111 1000 0000 1000 0000
0x83 131 -3 -124 -125

In general, with N bits the max/min for unsigned is 2
N
-1/0 , and for two’s

complement the max/min is 2
N-1

-1/-2
N-1

 .

What are the advantages and disadvantages of each integer representation?

Unsigned can represent about twice as the others in terms of magnitude, but no negatives. =(

S&M (lol) is easier for humans to read, but has two zeroes and the problem of going in the

opposite direction after overflow.

One’s Complement fixes above flaw, but still has two zeroes.

Two’s Complement has one extra negative number, but is otherwise perfect.

Complete the following function convert() that takes an unsigned integer as an argument, and

returns it’s value when interpreted as a sign and magnitude number:

int convert(unsigned int signMag){

return -(signMag >> 31)*(signMag&0x7fffffff);

 /* So the >> right shifts the number’s bits by 31 places and leaves

Only the topmost bit. The & makes the topmost bit 0. We hardcoded the

31 and the 0x7fffffff mask; later on we’ll learn about sizeof and can

Dynamically adjust to the data size. */

}

C details
int* p1, p2, p3, p4;

Did I just declare four pointers?

No, that would be int *p1, *p2, *p3, *p4. The spacing around the * doesn’t matter.

if ((5/4) * 100 == 125) printf(“C can do math!\n”);

Did it print?

No, integer division 5/4 is equal to 1, not 1.25. To get correct behavior, cast them or do (5.0/4.0).

CS 61C Spring 2010 TA: Long Wei

Section 115/6 Week 2 – Pointers cs61c-te@imail.eecs

Pointers

Writing the function swap and complete its call. void swap (int *x, int* y) {
 int temp = *x;

int foo = 5; *x = *y;

int baz = 42; *y = temp;

swap(&foo, &baz); /* Remember C is pass

printf(“foo is %d, baz is %d\n”, foo, baz); by value! */

/* foo is 42, baz is 5 */ }

 Alternatively:

 Slower if compiler sucks� void swap (int *x, int* y) {
 *x ^= *y ^= *x ^= *y;

 }

What is the output of the following program given this snapshot of memory?

Variable (if any) a b c p x y

Address ... 171 172 173 174 175 176 177 ... 655 656 ...

Initial Value 15 19 -5 171 0 255 4 -1 8

int main(int argc, char * argv[]){

 int a = 3, b = 144, c = 170;

 int *p;

 printf(“%d, %d, %d\n”, *p, p, &p);

 p = (int *) foo(a,&c);

 printf(“%d, %d, %d\n”, *p, p, &p);

 bar(&a, &b);

 printf(“%d, %d, %d\n”, a, b, c);

 return 0;

}

int foo (int x, int * y){

 *y = -12;

 return x + (int) y;

}

void bar (int * x, int * y){

 *x = *y;

 *y = (int) &y;

}

3, 171, 174

255, 176, 174

144, 656, -12

Bonus Question

What does this function do?

int mystery (unsigned int n) {

 int count = 8 * sizeof(int) ;

 n ^= (unsigned int) - 1 ;

 while (n) {

 count-- ;

 n &= (n - 1) ;

 }

 return count ;

}

Do your homework 1

