
CS61C L02 Number Representation (1)! Garcia, Spring 2013 © UCB!

! !Senior Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia!

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

Lecture #2 – Number Representation 

2013-01-25! There is one handout
today at the entrance!!

Great book ⇒ 
 The Universal History  

of Numbers  

by Georges Ifrah!
CS61C L02 Number Representation (2)! Garcia, Spring 2013 © UCB!

Review!
• CS61C: Learn 6 great ideas in computer
architecture to enable high performance
programming via parallelism, not just
learn C!

1.  Abstraction  
(Layers of Representation/Interpretation)!

2.  Moore’s Law!
3.  Principle of Locality/Memory Hierarchy!
4.  Parallelism!
5.  Performance Measurement and

Improvement!
6.  Dependability via Redundancy!

2"F1

CS61C L02 Number Representation (3)! Garcia, Spring 2013 © UCB!

Putting it all in perspective…!

“If the automobile had followed the same
development cycle as the computer,

a Rolls-Royce would today cost $100,
get a million miles per gallon,

and explode once a year,
killing everyone inside.”

 – Robert X. Cringely

CS61C L02 Number Representation (4)! Garcia, Spring 2013 © UCB!

Data input: Analog Digital!

• Real world is analog!!
• To import analog

information, we must
do two things!
• Sample!

§  E.g., for a CD, every
44,100ths of a second,
we ask a music signal
how loud it is.!

• Quantize!
§  For every one of these

samples, we figure out
where, on a 16-bit
(65,536 tic-mark)
“yardstick”, it lies.!

www.joshuadysart.com/journal/archives/digital_sampling.gif"

CS61C L02 Number Representation (5)! Garcia, Spring 2013 © UCB!

Digital data not nec born Analog…!

hof.povray.org
CS61C L02 Number Representation (6)! Garcia, Spring 2013 © UCB!

BIG IDEA: Bits can represent anything!!!

• Characters?!
• 26 letters ⇒ 5 bits (25 = 32)!
• upper/lower case + punctuation  

 ⇒ 7 bits (in 8) (“ASCII”)!
• standard code to cover all the world’s

languages ⇒ 8,16,32 bits (“Unicode”) 
www.unicode.com!

• Logical values?!
• 0 ⇒ False, 1 ⇒ True!

• colors ? Ex:!
• locations / addresses? commands?!
• MEMORIZE: N bits ⇔ at most 2N things!

Red (00)! Green (01)! Blue (11)!

CS61C L02 Number Representation (7)! Garcia, Spring 2013 © UCB!

How many bits to represent π ?!

a)  1!
b)   9 (π = 3.14, so that’s 011 “.” 001 100) !
c)  64 (Since Macs are 64-bit machines) !
d)  Every bit the machine has!!
e)  ∞ !

CS61C L02 Number Representation (8)! Garcia, Spring 2013 © UCB!

What to do with representations of numbers?!

•  Just what we do with numbers!!
• Add them!
• Subtract them!
• Multiply them!
• Divide them!
• Compare them!

•  Example: 10 + 7 = 17!
• …so simple to add in binary that we can

build circuits to do it!!
• subtraction just as you would in decimal!
• Comparison: How do you tell if X > Y ?!

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

1 1

CS61C L02 Number Representation (9)! Garcia, Spring 2013 © UCB!

What if too big?!
•  Binary bit patterns above are simply

representatives of numbers. Abstraction!
Strictly speaking they are called “numerals”.!

•  Numbers really have an ∞ number of digits!
•  with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits !
•  Just don’t normally show leading digits!

•  If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.!

00000 00001 00010 11111 11110
unsigned

CS61C L02 Number Representation (10)! Garcia, Spring 2013 © UCB!

How to Represent Negative Numbers?!

• So far, unsigned numbers!

• Obvious solution: define leftmost bit to be sign! !
• 0 + 1 – !
• Rest of bits can be numerical value of number!

• Representation called sign and magnitude!

00000 00001 01111 ...

10000 10001 11111 ...

00000 00001 01111 ... 10000 11111 ...
Binary  
odometer!

Binary  
odometer!

(C’s unsigned int, C99’s uintN_t)!

META: Ain’t no free lunch!

CS61C L02 Number Representation (11)! Garcia, Spring 2013 © UCB!

Shortcomings of sign and magnitude?!
• Arithmetic circuit complicated!

• Special steps depending whether signs are
the same or not!

• Also, two zeros!
•  0x00000000 = +0ten!

•  0x80000000 = –0ten !
• What would two 0s mean for programming?!

• Also, incrementing “binary odometer”,
sometimes increases values, and
sometimes decreases!!
• Therefore sign and magnitude abandoned!

CS61C L02 Number Representation (12)! Garcia, Spring 2013 © UCB!

Administrivia!
•  Upcoming lectures!

•  Next few lectures: Introduction to C!
•  Lab overcrowding!

•  Remember, you can go to ANY discussion (none, or one that
doesn’t match with lab, or even more than one if you want)!

•  Overcrowded labs - consider finishing at home and getting
checkoffs in lab, or bringing laptop to lab!

•  If you’re checked off in 1st hour, you get an extra point on the labs!!
•  TAs get 24x7 cardkey access (and will announce after-hours times)!

•  Enrollment!
•  It will work out, don’t worry!

•  Soda locks doors @ 6:30pm & on weekends!
•  Look at class website, piazza often!!

!http://inst.eecs.berkeley.edu/~cs61c/  
piazza.com!

Iclickerskinz.com!

CS61C L02 Number Representation (13)! Garcia, Spring 2013 © UCB!

Great DeCal courses I supervise!
• UCBUGG (3 units, P/NP)!

• UC Berkeley Undergraduate Graphics Group!
• TuTh 7-9pm in 200 Sutardja Dai!
• Learn to create a short 3D animation!
• No prereqs (but they might have too many

students, so admission not guaranteed)!
• http://ucbugg.berkeley.edu!

• MS-DOS X (2 units, P/NP)!
• Macintosh Software Developers for OS X!
• TuTh 5-7pm in 200 Sutardja Dai!
• Learn to program iOS devices!!
• No prereqs (other than interest)!
• http://msdosx.berkeley.edu!

CS61C L02 Number Representation (14)! Garcia, Spring 2013 © UCB!

Another try: complement the bits!

• Example: ! 710 = 001112 !–710 = 110002!

• Called One’s Complement!
• Note: positive numbers have leading 0s,
negative numbers have leadings 1s.!

00000 00001 01111 ...

11111 11110 10000 ...

• What is -00000 ? Answer: 11111!
• How many positive numbers in N bits?!
• How many negative numbers?!

Binary  
odometer!

CS61C L02 Number Representation (15)! Garcia, Spring 2013 © UCB!

Shortcomings of One’s complement?!

• Arithmetic still a somewhat complicated.!
• Still two zeros!

•  0x00000000 = +0ten!

•  0xFFFFFFFF = -0ten !

• Although used for a while on some
computer products, one’s complement
was eventually abandoned because
another solution was better.!

CS61C L02 Number Representation (16)! Garcia, Spring 2013 © UCB!

Standard Negative # Representation!

• Problem is the negative mappings “overlap”
with the positive ones (the two 0s). Want to
shift the negative mappings left by one.!
• Solution! For negative numbers, complement, then

add 1 to the result !

• As with sign and magnitude, & one’s compl. 
leading 0s ⇒ positive, leading 1s ⇒ negative!
• 000000...xxx is ≥ 0, 111111...xxx is < 0!
• except 1…1111 is -1, not -0 (as in sign & mag.)!

• This representation is Two’s Complement !
• This makes the hardware simple!!

(Also C’s short, long long, …, C99’s intN_t)!
(C’s int, aka a “signed integer”)!

CS61C L02 Number Representation (17)! Garcia, Spring 2013 © UCB!

Two’s Complement Formula !
• Can represent positive and negative numbers
in terms of the bit value times a power of 2:!

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20!

• Example: 1101two in a nibble?!
= 1x-(23) + 1x22 + 0x21 + 1x20!

= -23 + 22 + 0 + 20!
= -8 + 4 + 0 + 1 !
= -8 + 5!
= -3ten!

Example: -3 to +3 to -3
(again, in a nibble): 
x : 1101two  x’ : 0010two  +1 : 0011two  ()’: 1100two  +1 : 1101two!

CS61C L02 Number Representation (18)! Garcia, Spring 2013 © UCB!

2’s Complement Number “line”: N = 5!
• 2N-1 non-
negatives !
• 2N-1 negatives!
• one zero!
• how many
positives?!

00000 00001
00010

11111
11110

10000 01111 10001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-4 11100

00000 00001 01111 ...

11111 11110 10000 ...

Binary  
odometer!

CS61C L02 Number Representation (19)! Garcia, Spring 2013 © UCB!

Bias Encoding: N = 5 (bias = -15)!
• # = unsigned 
 + bias!
• Bias for N
bits chosen
as –(2N-1-1)!
• one zero!
• how many
positives?!

00000 00001
00010

11111
11110

10000 01111 10001

-15 -14
-13 16 15

2 1 0

.

.

.

.

.

.

14
11101

13 11100

00000 00001
01111

...
11111 11110 10000 ...

Binary  
odometer!

01110

-1

01110
CS61C L02 Number Representation (20)! Garcia, Spring 2013 © UCB!

How best to represent -12.75?!

a)  2s Complement (but shift binary pt)!
b)  Bias (but shift binary pt)!
c)  Combination of 2 encodings!
d)  Combination of 3 encodings!
e) We can’t!

!Shifting binary point means “divide
number by some power of 2. E.g.,  
1110 = 1011.02 so (11/4)10 = 2.7510 = 10.1102!

CS61C L02 Number Representation (21)! Garcia, Spring 2013 © UCB!

And in summary...!
• We represent “things” in computers as particular bit

patterns: N bits ⇒ 2N things !!
• These 5 integer encodings have different benefits; 1s

complement and sign/mag have most problems.!

•  unsigned (C99’s uintN_t) :  

•  2’s complement (C99’s intN_t) universal, learn!!

•   

• Overflow: numbers ∞; computers finite,errors! !

00000! 00001! 01111!...!

11111!11110!10000! ...!

META: We often make design
decisions to make HW simple!

META: Ain’t no free lunch!

00000! 00001! 01111!...! 10000! 11111!...!

CS61C L02 Number Representation (22)! Garcia, Spring 2013 © UCB!

REFERENCE: Which base do we use?!

• Decimal: great for humans, especially when
doing arithmetic!
• Hex: if human looking at long strings of

binary numbers, its much easier to convert
to hex and look 4 bits/symbol!
• Terrible for arithmetic on paper!

• Binary: what computers use;  
you will learn how computers do +, -, *, /!
• To a computer, numbers always binary!
• Regardless of how number is written:!
• 32ten == 3210 == 0x20 == 1000002 == 0b100000!
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing!

CS61C L02 Number Representation (23)! Garcia, Spring 2013 © UCB!

Two’s Complement for N=32!
 0000 ... 0000 0000 0000 0000two = !0ten 0000 ... 0000 0000 0000 0001two = !1ten 0000 ... 0000 0000 0000 0010two = !2ten . . . 

0111 ... 1111 1111 1111 1101two = ! 2,147,483,645ten 0111 ... 1111 1111 1111 1110two = ! 2,147,483,646ten 0111 ... 1111 1111 1111 1111two = ! 2,147,483,647ten 1000 ... 0000 0000 0000 0000two = !–2,147,483,648ten 1000 ... 0000 0000 0000 0001two = !–2,147,483,647ten 1000 ... 0000 0000 0000 0010two = !–2,147,483,646ten . . .  
1111 ... 1111 1111 1111 1101two = !–3ten 1111 ... 1111 1111 1111 1110two = !–2ten 1111 ... 1111 1111 1111 1111two = !–1ten!

• One zero; 1st bit called sign bit !
• 1 “extra” negative:no positive 2,147,483,648ten!

CS61C L02 Number Representation (24)! Garcia, Spring 2013 © UCB!

Two’s comp. shortcut: Sign extension!

• Convert 2’s complement number rep.
using n bits to more than n bits!
•  Simply replicate the most significant bit

(sign bit) of smaller to fill new bits!
•  2’s comp. positive number has infinite 0s!
•  2’s comp. negative number has infinite 1s!
•  Binary representation hides leading bits;  
sign extension restores some of them!
•  16-bit -4ten to 32-bit: !

1111 1111 1111 1100two !

1111 1111 1111 1111 1111 1111 1111 1100two!

