There is one handout today at the entrance!

There is one handout today at the entrance!

Review

• CS61C: Learn 6 great ideas in computer architecture to enable high performance programming via parallelism, not just learn C
 1. Abstraction (Layers of Representation/Interpretation)
 2. Moore’s Law
 3. Principle of Locality/Memory Hierarchy
 4. Parallelism
 5. Performance Measurement and Improvement
 6. Dependability via Redundancy

Putting it all in perspective…

“If the automobile had followed the same development cycle as the computer,

– Robert X. Cringely

Data input: Analog ➔ Digital

• Real world is analog!

• To import analog information, we must do two things
 • Sample
 • E.g., for a CD, every 44,100ths of a second, we ask a music signal how loud it is.
 • Quantize
 • For every one of these samples, we figure out where, on a 16-bit (65,536 tic-mark) “yardstick”, it lies.

Digital data not nec born Analog…

BIG IDEA: Bits can represent anything!!

• Characters?
 • 26 letters ➔ 5 bits ($2^5 = 32$)
 • upper/lower case + punctuation ➔ 7 bits (in 8) (“ASCII”)
 • standard code to cover all the world’s languages ➔ 8,16,32 bits (“Unicode”) www.unicode.com

• Logical values?
 • 0 ➔ False, 1 ➔ True

• colors? Ex: Red (69) Green (61) Blue (65)

• locations / addresses? commands?

• MEMORIZE: N bits ➔ at most 2^N things
How many bits to represent π?

a) 1
b) 9 (π = 3.14, so that’s 011 “.” 001 100)
c) 64 (Since Macs are 64-bit machines)
d) Every bit the machine has!
e) ∞

What to do with representations of numbers?

• Just what we do with numbers!
 - Add them
 1 1
 - Subtract them
 1 0 1 0
 - Multiply them
 + 0 1 1 1
 - Divide them
 ──────
 - Compare them
 ──────

• Example: 10 + 7 = 17
 1 0 0 0 1

What if too big?

• Binary bit patterns above are simply representatives of numbers. Abstraction! Strictly speaking they are called “numerals”.
• Numbers really have an ∞ number of digits
 - with almost all being same (00…0 or 11…1) except for a few of the rightmost digits
 - Just don’t normally show leading digits
• If result of add (or -, *, /) cannot be represented by these rightmost HW bits, overflow is said to have occurred.

How to Represent Negative Numbers?

(C’s unsigned int, C99’s uintN_t)

• So far, unsigned numbers
 00000 0001 00010 11110 11111
 Binary odometer

• Obvious solution: define leftmost bit to be sign!
 - 0 ➞ +
 - 1 ➞ –
• Rest of bits can be numerical value of number
• Representation called sign and magnitude
 00000 0001 00010 11111
 Binary odometer

Shortcomings of sign and magnitude?

• Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not
• Also, two zeros
 - 0x00000000 = +0_{ten}
 - 0x80000000 = −0_{ten}
 - What would two 0s mean for programming?
• Also, incrementing “binary odometer”, sometimes increases values, and sometimes decreases!

Therefore sign and magnitude abandoned

Administrivia

• Upcoming lectures
 - Next few lectures: Introduction to C
• Lab overcrowding
 - Remember, you can go to ANY discussion (none, or one that doesn’t match with lab, or even more than one if you want)
 - Overcrowded labs - consider finishing at home and getting checkoffs in lab, or bringing laptop to lab
 - If you’re checked off in 1st hour, you get an extra point on the labs!
• TAs get 24x7 cardkey access (and will announce after-hours times)
• Enrollment
 - It will work out, don’t worry
• Soda locks doors @ 6:30pm & on weekends
• Look at class website, piazza often!
 http://inst.eecs.berkeley.edu/~cs61c/piazza.com

META: Ain’t no free lunch
in terms of the bit value times a power of 2:

Example:

Although used for a while on some computer products, one’s complement was eventually abandoned because another solution was better.

Shortcomings of One’s complement?

• Arithmetic still a somewhat complicated.
• Still two zeros
 • 0x00000000 = +0_{ten}
 • 0xFFFFFFF = -0_{ten}
• Although used for a while on some computer products, one’s complement was eventually abandoned because another solution was better.

Two’s Complement Formula

• Can represent positive and negative numbers in terms of the bit value times a power of 2:
 \[d_{31} \times (2^{31}) + d_{30} \times 2^{30} + \ldots + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0 \]

Example: 1101_{two} in a nibble?

\[
\begin{align*}
1 \times (2^3) + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\
= 8 + 4 + 0 + 1 \\
= 8 + 5 \\
= -3_{ten}
\end{align*}
\]

Another try: complement the bits

• Example: \(7_{10} = 00111_2\) \(-7_{10} = 11000_2\)
• Called One’s Complement
• Note: positive numbers have leading 0s, negative numbers have leadings 1s. Binary odometer

Standard Negative # Representation

• Problem is the negative mappings “overlap” with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 • Solution! For negative numbers, complement, then add 1 to the result
 • As with sign and magnitude, & one’s compl. leading 0s \(\Rightarrow\) positive, leading 1s \(\Rightarrow\) negative
 \[
 \begin{align*}
 \text{00000...xxx} & \text{ is } \geq 0, \text{111111...xxx} \text{ is } < 0 \\
 \text{except } 1...1111 \text{ is -1, not -0 (as in sign & mag.)}
 \end{align*}
 \]
• This representation is Two’s Complement
 • This makes the hardware simple!
 (C’s int, aka a “signed integer”)
 (Also C’s short, long, long... C99’s intN_t)

2’s Complement Number “line”: \(N = 5\)

-3 \(\Rightarrow\) -16 \(\Rightarrow\) -32 \(\Rightarrow\) ... \(\Rightarrow\) 0 \(\Rightarrow\) 1 \(\Rightarrow\) 2 \(\Rightarrow\) ... \(\Rightarrow\) 1111 \(\Rightarrow\) 10000

• 2^{N-1} non-negatives
• 2^{N-1} negatives
• one zero
• how many positives?

Great DeCal courses I supervise

- UCBUGG (3 units, P/NP)
 • UC Berkeley Undergraduate Graphics Group
 • TuTh 7-9pm in 200 Sutardja Dai
 • Learn to create a short 3D animation
 • No prereqs (but they might have too many students, so admission not guaranteed)
 • http://ucbugg.berkeley.edu
- MS-DOS X (2 units, P/NP)
 • Macintosh Software Developers for OS X
 • TuTh 5-7pm in 200 Sutardja Dai
 • Learn to program iOS devices!
 • No prereqs (other than interest)
 • http://madosx.berkeley.edu

Another try: complement the bits

• Example: \(7_{10} = 00111_2\) \(-7_{10} = 11000_2\)
• Called One’s Complement
• Note: positive numbers have leading 0s, negative numbers have leadings 1s. Binary odometer

Standard Negative # Representation

• Problem is the negative mappings “overlap” with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 • Solution! For negative numbers, complement, then add 1 to the result
 • As with sign and magnitude, & one’s compl. leading 0s \(\Rightarrow\) positive, leading 1s \(\Rightarrow\) negative
 \[
 \begin{align*}
 \text{00000...xxx} & \text{ is } \geq 0, \text{111111...xxx} \text{ is } < 0 \\
 \text{except } 1...1111 \text{ is -1, not -0 (as in sign & mag.)}
 \end{align*}
 \]
• This representation is Two’s Complement
 • This makes the hardware simple!
 (C’s int, aka a “signed integer”)
 (Also C’s short, long, long... C99’s intN_t)
And in summary...

- We represent “things” in computers as particular bit patterns: N bits \(\Rightarrow \) 2^N things
- These 5 integer encodings have different benefits; 1s complement and sign/mag have most problems.
 - unsigned (C99’s uintN_t):
 \[
 \begin{align*}
 0000 & \ldots 0000 0001 \ldots 0111 & & 0 \text{ bits chosen as } -1 \times (2^{N-1} - 1) \\
 0000 & \ldots 0000 1000 & & \text{one zero} \\
 0000 & \ldots 0000 1011 & & \text{how many positives?}
 \end{align*}
 \]
 - 2’s complement (C99’s intN_t) universal, learn!
 \[
 \begin{align*}
 0000 & \ldots 0000 0000 \ldots 0001 & & 0 \text{ bits chosen as } -1 \times (2^{N-1} - 1) \\
 0000 & \ldots 0000 1000 & & \text{one zero} \\
 0000 & \ldots 0000 1011 & & \text{how many positives?}
 \end{align*}
 \]
- Overflow: numbers \(\pm \); computers finite, errors!

META: We often make design decisions to make HW simple

REFERENCE: Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - 32_{ten} \Rightarrow 32_{hex} = 0x20 = 100000
 - Use subscripts “ten”, “hex”, “two” in book, slides when might be confusing

Two’s Complement for N=32

- Convert 2’s complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - 2’s comp. positive number has infinite 0s
 - 2’s comp. negative number has infinite 1s
 - Binary representation hides leading bits; sign extension restores some of them
- 16-bit -4_{ten} to 32-bit:
 \[
 \begin{align*}
 1111 & \ldots 1111 1100_{two} \\
 1111 & \ldots 1111 1111_{ten} \\
 1111 & \ldots 1111 1111_{two}
 \end{align*}
 \]

META: Ain’t no free lunch

Two’s comp. shortcut: Sign extension

- One zero; 1st bit called sign bit
- 1 “extra” negative: no positive 2,147,483,648_{ten}

META: We often make design decisions to make HW simple

And in summary...

- We represent “things” in computers as particular bit patterns: N bits \(\Rightarrow \) 2^N things
- These 5 integer encodings have different benefits; 1s complement and sign/mag have most problems.
 - unsigned (C99’s uintN_t):
 \[
 \begin{align*}
 0000 & \ldots 0000 0001 \ldots 0111 & & 0 \text{ bits chosen as } -1 \times (2^{N-1} - 1) \\
 0000 & \ldots 0000 1000 & & \text{one zero} \\
 0000 & \ldots 0000 1011 & & \text{how many positives?}
 \end{align*}
 \]
 - 2’s complement (C99’s intN_t) universal, learn!
 \[
 \begin{align*}
 0000 & \ldots 0000 0000 \ldots 0001 & & 0 \text{ bits chosen as } -1 \times (2^{N-1} - 1) \\
 0000 & \ldots 0000 1000 & & \text{one zero} \\
 0000 & \ldots 0000 1011 & & \text{how many positives?}
 \end{align*}
 \]
- Overflow: numbers \(\pm \); computers finite, errors!

META: We often make design decisions to make HW simple

REFERENCE: Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - 32_{ten} \Rightarrow 32_{hex} = 0x20 = 100000
 - Use subscripts “ten”, “hex”, “two” in book, slides when might be confusing

Two’s Complement for N=32

- Convert 2’s complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - 2’s comp. positive number has infinite 0s
 - 2’s comp. negative number has infinite 1s
 - Binary representation hides leading bits; sign extension restores some of them
- 16-bit -4_{ten} to 32-bit:
 \[
 \begin{align*}
 1111 & \ldots 1111 1100_{two} \\
 1111 & \ldots 1111 1111_{ten} \\
 1111 & \ldots 1111 1111_{two}
 \end{align*}
 \]