CS61C : Machine Structures

Lecture 4 — Introduction to C (pt 2)
2013-01-30

Senior Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

C most popular! =

- TIOBE programming - ! PN
has been tracking programming -
language popularity for the past e

decade, and C (in red) is now on top! @ | . [0

www.tiobe.com/index.php/content/paperinfo/tpci/ |2 T e

CS61C L04 Introduction to C (pt 2) (1) Garcia, Spring 2013 © UCB

Review

 All declarations go at the beginning of
each function except if you use C99.

* All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

e A pointer is a C version of the
address.

* “follows” a pointer to its value
& gets the address of a value

*Only 0 (i.e., NULL) evaluate to FALSE.

ﬂ CS61C L04 Introduction to C (pt 2) (3) Garcia, Spring 2013 © UCB

More C Pointer Dangers

* Declaring a pointer just allocates
slaace to hold the pointer — it does not
allocate something to be pointed to!

e Local variables in C are not initialized,
they may contain anything.

 What does the following code do?

void f ()

{
int *ptr;
*ptr = 5;

ﬂ CS61C L04 Introduction to C (pt 2) (4) Garcia, Spring 2013 © UCB

Arrays (1/5)

e Declaration:

int ar[2];

declares a 2-element intel?er array. An
array is really just a block of memory.

int ar[] = {795, 635};
declares and fills a 2-elt integer array.

* Accessing elements:

ar[num]

(dreturns the numt® element.

CS61C L04 Introduction to C (pt 2) (5) Garcia, Spring 2013 © UCB

Arrays (2/5)

* Arrays are (almost) identical to
pointers

echar *string and char string[]
are nearly identical declarations

* They differ in very subtle ways:
incrementing, declaration of filled arrays

» Key Concept: An array variable is a
“pointer” to the first element.

Q CS61C L04 Introduction to C (pt 2) (6) Garcia, Spring 2013 © UCB

Arrays (3/5)

e Consequences:

ear is an array variable but looks like a
pointer in many respects (though not all)

ear[0] Is the same as *ar
ear[2] is the same as * (ar+2)
* We can use pointer arithmetic to access
arrays more conveniently.
* Declared arrays are only allocated
while the scope is valid

char *foo()
char string[32]; ...;
return string;

Cd } IS Incorrect
CS61C L04 Introduction to C (pt 2) (7) Garcia, Spring 2013 © UCB

Arrays (4/5)

e Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a variable for declaration & incr

* Wrong

int i, ar[10];

for(i1i = 0; 1 < 10; i++){ ... }
* Right

int ARRAY SIZE = 10;
int i, a[ARRAY SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }

 Why? SINGLE SOURCE OF TRUTH

* You’re utilizing indirection and avoiding
maintaining two copies of the number 10

Q CS61C L04 Introduction to C (pt 2) (8) Garcia, Spring 2013 © UCB

Arrays (5/5)

e Pitfall: An array in C does not know its
own length, & bounds not checked!

- Consequence: We can accidentally
access off the end of an array.

- Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

e Segmentation faults and bus errors:

* These are VERY difficult to find;
be careful! (You’ll learn how to debug
these in lab...)

Q CS61C L04 Introduction to C (pt 2) (9) Garcia, Spring 2013 © UCB

Pointers (1/4) ...review...

* Sometimes you want to have a
procedure increment a variable?

 What gets printed?

Il
(8]

void AddOne(int x) Y
{ x = x + 1; }

int y = 5;

AddOne(y);
printf(“y = %d\n”, y);

ﬂ CS61C L04 Introduction to C (pt 2) (10) Garcia, Spring 2013 © UCB

Pointers (2/4) ...review...

* Solved by passing in a pointer to our
subroutine.

* Now what gets printed?

Il
(o)

void AddOne(int *p) Y
{ *p:*p-|-1; }

int y = 5;

AddOne (&y) ;
printf(“y = %d\n”, y);

w CS61C L04 Introduction to C (pt 2) (11) Garcia, Spring 2013 © UCB

Pointers (3/4)

* But what if what you want changed is
a pointer?

 What gets printed?

void IncrementPtr(int *p) *q = 50

{ p= p+1; } ?_q

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

w CS61C L04 Introduction to C (pt 2) (12) Garcia, Spring 2013 © UCB

50 | 60 | 70

Pointers (4/4)

e Solution! Pass a pointer to a pointer,
declared as **h

* Now what gets printed?

void IncrementPtr(int **h) *qg = 60

{ *h = *h + 1; } ?q q

int A[3] = {50, 60, 70}; 1 1

int *q = A;

IncrementPtr (&q) ; 50 | 60 | 70

printf(“*q = %d\n”, *q);

w CS61C L04 Introduction to C (pt 2) (13) Garcia, Spring 2013 © UCB

Dynamic Memory Allocation (1/4)

e C has operator sizeof () which gives size in bytes
(of type or variable)

 Assume size of objects can be misleading and is bad
style, so use sizeof (type)

- Many years ago an int was 16 bits, and programs were
written with this assumption.

- What is the size of integers now?

e« “sizeof” knows the size of arrays:
int ar[3]; // Or: int ar[] = {54, 47, 99}
sizeof(ar) = 12
- ...as well for arrays whose size is determined at run-time:
int n = 3;
int ar[n]; // Or: int ar[fun that returns 3()];

sizeof(ar) = 12

Q CS61C L04 Introduction to C (pt 2) (14) Garcia, Spring 2013 © UCB

Dynamic Memory Allocation (2/4)

*To allocate room for something new to
point to, use malloc () (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

* Now, ptr points to a space somewhere in
memory of size (sizeof (int)) in bytes.

e (int *) simply tells the compiler what will
go into that space (called a typecast).

malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

g 7 * This allocates an array of n integers.

CS61C L04 Introduction to C (pt 2) (15) Garcia, Spring 2013 © UCB

Dynamic Memory Allocation (3/4)

*Once malloc () is called, the memory
location contains garbage, so don’t
use It until you've set its value.

* After dynamically allocating space, we
must dynamically free it:

free(ptr);

e Use this command to clean up.

- Even though the program frees all
E memory on exit (or when main returns),

don’t be lazy!

* You never know when your main will get
(’d transformed into a subroutine!

CS61C L04 Introduction to C (pt 2) (16) Garcia, Spring 2013 © UCB

Dynamic Memory Allocation (4/4)

* The following two things will cause your
program to crash or behave strangely later
on, and cause VERY VERY hard to figure

out bugs:
e free ()ing the same piece of memory twice

- calling free () on something you didn’t get
back frommalloc ()

e The runtime does not check for these
mistakes

- Memory allocation is so performance-critical
that there just isn’t time to do this

* The usual result is that you corrupt the memory
allocator’s internal structure

- You won’t find out until much later on, in a
‘(d totally unrelated part of your code!

CS61C L04 Introduction to C (pt 2) (17) Garcia, Spring 2013 © UCB

Pointers in C
 Why use pointers?

- If we want to pass a huge struct or array,
it’s easier / faster / etc to pass a pointer
than the whole thing.

- In general, pointers allow cleaner, more
compact code.
S0 what are the drawbacks?

* Pointers are probably the single largest
source of bugs in software, so be careful

anytime you deal with them.
- Dangling reference (use ptr before malloc)

cd - Memory leaks (tardy free, lose the ptr)

CS61C L04 Introduction to C (pt 2) (18) Garcia, Spring 2013 © UCB

Arrays not implemented as you’d think

void foo() {
int *p, *q, Xx;

int a[4];
p = (int *) malloc (sizeof(int));
qa = &Xj

*p = 1; // p[0] would also work here
printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);

*q = 2; // q[0] would also work here
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);

*a = 3; // a[0] would also work here
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

we

O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ...

40120[243§ | | |1
} \?\pq/ X ‘ unnamed-malloc-space

Cd 8~ a:3, a:24, sa:24 <

CS61C L04 Introdu K&R: “An array name is nOt a Variable” Garcia, Spring 2013 © UCB

Peer Instruction
Which are guaranteed to print out 5?

I: main() {
int *a-ptr = (int *)malloc(int);
*a-ptr = 5;
printf (“%d”, *a-ptr);

IT:main() {
int *p, a = 5;
p = &a; ...

printf(“%d”, a);

I II
a) - -
b) - YES
c) YES -

d) YES YES

w e) No idea
CS61C L04 Introduction to C (pt 2) (20) Garcia, Spring 2013 © UCB

Binky Pointer Video (thanks to NP @ SU)

Pointer Fun with

InKy “~

by Nick Parlante

This is document 104 in the Stanford CS
Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

@ CS61C L04 Introduction to C (pt 2) (21) Garcia, Spring 2013 © UCB

“And in Conclusion...”

e Pointers and arrays are virtually same
e C knows how to increment pointers

 C is an efficient language, with little protection
- Array bounds not checked
- Variables not automatically initialized

* Use handles to change pointers

 Dynamically allocated heap memory must be
manually deallocated in C.

- Usemalloc () and free () to allocate and deallocate
memory from heap.

#Beware) The cost of efficiency is more overhead
or the programmer.

- “C gives you a lot of extra rope but be careful not to hang

yourself with it!”
ﬂ CS61C L04 Introduction to C (pt 2) (22) Garcia, Spring 2013 © UCB

