UCB CS61C : Machine Structures

Lecture 07
Infroduction to MIPS : Decisions I

2013-02-06

CODE.ORG HOPES TO GROW CS EDUCATION

A new non-profit foundation is dedicated
to growing computer programming
education. Their goals are to spread the
word that there’s a worldwide shortage
of talent, and list all available courses!!

code.org

Review

= Memory is byte-addressable, but lw and
access one word at a time.

A CFom’rer (used by lw and sw) is just a memor
dress, so we con add to it or sub’rroc’r from i
(using offset).

A Decision allows us to decide what to execute at
run-time rather than compile-time.

C Decisions are made using conditional
statements within i, , ,

MIPS Decision N ms’rruc’nons are the
condmonaI%rangﬁ g

New Instructions:

1w, sw, beq, bne, j

- CS61C LO7 Introduction to MIPS : Decisions |l (2) Garcia, Spring 2013 © UCB

Last time: Loading, Storing bytes 1/2

* |n addition to word data transfers
(lw, sw), MIPS has byte data transfers:

o load byte:
o store byte:

= same format as 1w, sw

= E.Q,
o contents of memory location with address = sum
of “3” + contents of register s 1 is copied fo the
low byte position of register s0.

;¥ g
? 2 CS61C LO7 Introduction to MIPS : Decisions |l (3) Garcia, Spring 2013 © UCB

Loading, Storing bytes 2/2

= What do with other 24 bits in the 32 bit register?
o |b: sign extends to fill upper 24 bits

XXXX XXXX XXXX XXXX XXXX XXXX

—
...is copied to “sign-extend”

= Normally dont want to sign extend chars

= MIPS instruction that doesn't
sign extend when loading bytes:

= |oad byte unsigned:
J y

y ¥ g
T 2 CS61C LO7 Introduction to MIPS : Decisions |l (4) Garcia, Spring 2013 © UCB

Overflow in Arithmetic (1/2)

= Reminder: Overflow occurs when there is a
mistake in arithmetic due to the limited
precision in computers.

= Example (4-bit unsigned numbers):
15 1111
3 + 0011
18 10010

= But we don’t have room for 5-bit solution, so the
solution would be 0010, which is +2, and wrong.

oL
. 2 CS61C LO7 Introduction to MIPS : Decisions |l (5) Garcia, Spring 2013 © UCB

Overflow in Arithmetic (2/2)

= Some languages detect overflow (Ada),
some don't (C)

= MIPS solution is 2 kinds of arithmetic instructs:

= These cause overflow to be detected
 add (add)

» add immediate |)
= subtract (sub)
o These do not cause overflow detection
- add unsigned |)
- add immediate unsigned)
- subtract unsigned |)

= Compiler selects appropriate arithmetic

2 ,»° MIPS C compilers produce

CS61C LO7 Introduction to MIPS : Decisions |l (6) Garcia, Spring 2013 © UCB

Two “Logic” Instructions

= Here are 2 more new instructions
= Shift Left:

= Store in $s1 the value from $s2 shifted 2 bits to the
left (they fall off end), inserting 0’s on right; << in C.

= Before:

hex

two

o After: 8.,
m’rwo

= What arithmetic effect does shift left have?

= Shift Right: is opposite shift; >>

y V o
? “2 CS61C LO7 Introduction to MIPS : Decisions |l (7) Garcia, Spring 2013 © UCB

Loops in C/Assembly (1/3)

= Simple loop in C; is an array of ints
do { g =g + [1];

} while
= Rewrite this

goto Loop;
= Use this mapping:

g, h, z
$sl, $s2, ’

oL
? 2 CS61C LO7 Introduction to MIPS : Decisions |l (8) Garcia, Spring 2013 © UCB

Loops in C/Assembly (2/3)

= Final compiled MIPS code:

Loop: sll St1, ;2
addu S$tl1,St1l,
1w Stl,0(Stl)
addu S$sl1,Ssl,Stl
addu , ,
bne , $s2,Loop

= Original code:
Loop: g

Garcia, Spring 2013 © UCB

Loops in C/Assembly (3/3)

= There are three types of loops in C:

= Each can be rewritten as either of the other two,
so the method used in the previous example
can be applied to these loops as well.

= Key Concept: Though there are multiple ways of
writing a loop in MIPS, the key to decision-
making is conditional branch

oL
\, > CS61C LO7 Introduction to MIPS : Decisions |l (10) Garcia, Spring 2013 © UCB

Administrivia

= Any administrivia?

CS61C LO7 Introduction to MIPS : Decisions Il (11) Garcia, Spring 2013 © UCB

Inequailities in MIPS (1/4)

= Until now, we've only tested equalities
(==and !=in C). General programs need to
test < and > as well.

= |Infroduce MIPS Inequality Instruction:

= “Set on Less Than”
éame thing...

“set” means “change to 17,
“reset” means “change to 0”.

2 CS61C LO7 Introduction to MIPS : Decisions Il (12) Garcia, Spring 2013 © UCB

o Syntax:
= Meaning:

Inequalities in MIPS (2/4)

= How do we use this? Compile by hand:

= Answer: compiled MIPS code...

= Register $0 always contains the value 0, so
and often use it for comparison after an
instruction.

Aslt = bne pairmeans if (.. < ..)goto...

oL
? 2 CS61C LO7 Introduction to MIPS : Decisions |l (13) Garcia, Spring 2013 © UCB

Inequalities in MIPS (3/4)

= Now we can implement <,
but how do we implement >, =and = ?

= We could add 3 more instructions, but:
= MIPS goal: Simpler is Better

= Can we implement = in one or more
Instructions using just and

= What about >?
= What about =7

oL
. 2 CS61C LO7 Introduction to MIPS : Decisions |l (14) Garcia, Spring 2013 © UCB

Inequalities in MIPS (4/4)

slt $t0,Ss0,Ssl
beq $t0,$0,skip

<stuff>
skip:

Two independent variations possible:

Use s1t $to0, instead of
slt StO,

Use b~ instead of b

oL
. > CS61C LO7 Introduction to MIPS : Decisions |l (15) Garcia, Spring 2013 © UCB

Immediates in Inequalities

= There is also an immediate version of to
test against constants:

= Helpful in for loops
if (g >= 1) goto Loop

slti $t0,S$s0,1

C
M
|
P
S

beq $tO0,$0,

/ / An slt = beq pair means if (.. = ..)goto...

/ CS61C LO7 Introduction to MIPS : Decisions Il (16) Garcia, Spring 2013 © UCB

What about unsigned numbers?

= Also unsigned inequality instructions:

4

...which sets result o 1 or O depending on
unsigned comparisons

= Whatis value of $t0, $t1°?
($sO = FFFF FFFA,_, $s1 = 0000 FFFA)

oL
\, > CS61C LO7 Introduction to MIPS : Decisions Il (17) Garcia, Spring 2013 © UCB

MIPS Signed vs. Unsigned - diff meanings!

= MIPS terms Signed/Unsigned “overloaded”:
= Do/Don't sign extend

= Do/Don't overflow

= Do sighed/unsigned compare

;¥ g
? 2 CS61C LO7 Introduction to MIPS : Decisions |l (18) Garcia, Spring 2013 © UCB

Peer Instruction

addi $s0,S$s0,-1
slti , ;2
beq ' $0
slt , ,Ss0
bne , S0 ,

($Ss0=1,)

What C code properly fills in
the blank in loop below?

: do {i--;} while(_);

A A A A A AL AL
VIVAIVAVIVAIVA
[S S Y Y -
AIVIVAAAIVIVAA

OO0 Qoo D
NNNNNNNNONDN
HHe e He e - He e -

? 2 CS61C LO7 Introduction to MIPS : Decisions Il (19) Garcia, Spring 2013 © UCB

“And in conclusion...”

= To help the conditional branches make
decisions concerning inequalities, we introduce:
“Set on Less Than” called

4 4 4

= One can store and load (signed and unsigned)
bytes as well as words with 1b,

= Unsighed add/sub don’t cause overflow

= New MIPS Instructions:
sll, srl, 1lb, 1lbu
slt, slti, sltu, sltiu
addu, addiu, subu

2 CS61C LO7 Introduction to MIPS : Decisions |l (20) Garcia, Spring 2013 © UCB

CS61C LO7 Introduction to MIPS : Decisions |l (21) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (1/3)

= Choose among four alternatives depending on
whether k has the value 0, 1, 2 or 3. Compile
this C code:

switch (k) {

case 0: f=i+j;
case 1: f=g+th;
case 2: g—h;
case 3: f=i—j;

oL
. > CS61C LO7 Introduction to MIPS : Decisions |l (22) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (2/3)

= This is complicated, so simplify.
= Rewrite it as a chain of if-else statements,
which we already know how to compile:

if(k==0) f=i+j;
else 1f(k==1) £f=g+h;

else i1f(k==2) f=g-h;
else if(k==3) f=i—j;
= Use this mapping:

£:$s0, g:$Ssl1l, h:Ss2,
1:8s3, j:Ss4, k:Ss5

2 CS61C LO7 Introduction to MIPS : Decisions |l (23) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (3/3)

= Final compiled MIPS code:

bne $s5,$0,

add Ss0,S$s3,S$s4
j

addi $t0,Ss5,-1

bne $t0,S0,

add $s0,Ssl,S$s2
j

addi S$t0,S$s5,-2

bne $t0,S0,

sub $s0,$sl,$s2
j

addi $tO0,S$s5,-3

bne S$t0,S$0,

sub $s0,$s3,Ss4

oL
. > CS61C LO7 Introduction to MIPS : Decisions |l (24) Garcia, Spring 2013 © UCB

