
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine Structures

 Lecture 07
Introduction to MIPS : Decisions II

 2013-02-06 Sr Lecturer SOE
Dan Garcia

A new non-profit foundation is dedicated
to growing computer programming
education. Their goals are to spread the
word that there’s a worldwide shortage
of talent, and list all available courses!!

code.org!

CS61C L07 Introduction to MIPS : Decisions II (2) Garcia, Spring 2013 © UCB

Review
§  Memory is byte-addressable, but lw and sw

access one word at a time.
§  A pointer (used by lw and sw) is just a memory

address, so we can add to it or subtract from it
(using offset).

§  A Decision allows us to decide what to execute at
run-time rather than compile-time.

§  C Decisions are made using conditional
statements within if, while, do while, for.

§  MIPS Decision making instructions are the
conditional branches: beq and bne.

§  New Instructions:
lw, sw, beq, bne, j!

CS61C L07 Introduction to MIPS : Decisions II (3) Garcia, Spring 2013 © UCB

Last time: Loading, Storing bytes 1/2

§  In addition to word data transfers
(lw, sw), MIPS has byte data transfers:
ú  load byte: lb!
ú  store byte: sb!

§  same format as lw, sw!
§  E.g., lb $s0, 3($s1)!

ú  contents of memory location with address = sum
of “3” + contents of register s1 is copied to the
low byte position of register s0.

CS61C L07 Introduction to MIPS : Decisions II (4) Garcia, Spring 2013 © UCB

x!

Loading, Storing bytes 2/2
§  What do with other 24 bits in the 32 bit register?

ú  lb: sign extends to fill upper 24 bits

§  Normally don’t want to sign extend chars
§  MIPS instruction that doesn’t

 sign extend when loading bytes:
ú  load byte unsigned: lbu!

byte
loaded …is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx! zzz zzzz!

CS61C L07 Introduction to MIPS : Decisions II (5) Garcia, Spring 2013 © UCB

Overflow in Arithmetic (1/2)

§  Reminder: Overflow occurs when there is a
mistake in arithmetic due to the limited
precision in computers.

§  Example (4-bit unsigned numbers):
!! 15 ! ! 1111!
!!+ 3 ! ! + 0011!
!! 18 ! ! 10010!
ú  But we don’t have room for 5-bit solution, so the

solution would be 0010, which is +2, and wrong.

CS61C L07 Introduction to MIPS : Decisions II (6) Garcia, Spring 2013 © UCB

Overflow in Arithmetic (2/2)

§  Some languages detect overflow (Ada),
some don’t (C)

§  MIPS solution is 2 kinds of arithmetic instructs:
ú  These cause overflow to be detected
   add (add)
   add immediate (addi)
   subtract (sub)

ú  These do not cause overflow detection
   add unsigned (addu)
   add immediate unsigned (addiu)
   subtract unsigned (subu)

§  Compiler selects appropriate arithmetic
ú  MIPS C compilers produce addu, addiu, subu!

CS61C L07 Introduction to MIPS : Decisions II (7) Garcia, Spring 2013 © UCB

Two “Logic” Instructions

§  Here are 2 more new instructions
§  Shift Left: sll $s1,$s2,2 #s1=s2<<2!

ú  Store in $s1 the value from $s2 shifted 2 bits to the
left (they fall off end), inserting 0’s on right; << in C.

ú  Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

ú  After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

ú  What arithmetic effect does shift left have?

§  Shift Right: srl is opposite shift; >>!

CS61C L07 Introduction to MIPS : Decisions II (8) Garcia, Spring 2013 © UCB

Loops in C/Assembly (1/3)

§  Simple loop in C; A[] is an array of ints
!do { !g = g + A[i];  
 i = i + j;  
} while (i != h);!

§  Rewrite this as:
 Loop:!g = g + A[i];  
! !i = i + j;  
! !if (i != h) goto Loop;!

§  Use this mapping:
 g, h, i, j, base of A  
 $s1, $s2, $s3, $s4, $s5!

CS61C L07 Introduction to MIPS : Decisions II (9) Garcia, Spring 2013 © UCB

Loops in C/Assembly (2/3)

§  Final compiled MIPS code:
Loop: sll $t1,$s3,2 # $t1= 4*I  
 addu $t1,$t1,$s5 # $t1=addr A+4i  
 lw $t1,0($t1) # $t1=A[i]  
 addu $s1,$s1,$t1 # g=g+A[i]  
 addu $s3,$s3,$s4 # i=i+j  
 bne $s3,$s2,Loop # goto Loop  
 # if i!=h!

§  Original code:
 Loop:!g = g + A[i];  
! !i = i + j;  
! !if (i != h) goto Loop;!

CS61C L07 Introduction to MIPS : Decisions II (10) Garcia, Spring 2013 © UCB

Loops in C/Assembly (3/3)
§  There are three types of loops in C:

ú  while!
ú  do … while!
ú  for!

§  Each can be rewritten as either of the other two,
so the method used in the previous example
can be applied to these loops as well.

§  Key Concept: Though there are multiple ways of
writing a loop in MIPS, the key to decision-
making is conditional branch

CS61C L07 Introduction to MIPS : Decisions II (11) Garcia, Spring 2013 © UCB

Administrivia
§  Any administrivia?

CS61C L07 Introduction to MIPS : Decisions II (12) Garcia, Spring 2013 © UCB

Inequalities in MIPS (1/4)
§  Until now, we’ve only tested equalities

(== and != in C). General programs need to
test < and > as well.

§  Introduce MIPS Inequality Instruction:
ú  “Set on Less Than”
ú  Syntax: slt reg1,reg2,reg3!
ú  Meaning:

 if (reg2 < reg3)  
! !reg1 = 1;  
!else reg1 = 0; !

 “set” means “change to 1”,
“reset” means “change to 0”.

Same thing…

CS61C L07 Introduction to MIPS : Decisions II (13) Garcia, Spring 2013 © UCB

Inequalities in MIPS (2/4)

§  How do we use this? Compile by hand:
if (g < h) goto Less; #g:$s0, h:$s1!

§  Answer: compiled MIPS code…
 slt $t0,$s0,$s1 # $t0 = 1 if g<h" 
bne $t0,$0,Less # goto Less  
 # if $t0!=0  
 # (if (g<h)) Less:!

§  Register $0 always contains the value 0, so bne
and beq often use it for comparison after an slt
instruction.

§  A slt è bne pair means if(… < …)goto…

CS61C L07 Introduction to MIPS : Decisions II (14) Garcia, Spring 2013 © UCB

Inequalities in MIPS (3/4)

§  Now we can implement <,
but how do we implement >, ≤ and ≥ ?

§  We could add 3 more instructions, but:
ú  MIPS goal: Simpler is Better

§  Can we implement ≤ in one or more
instructions using just slt and branches?
ú  What about >?
ú  What about ≥?

CS61C L07 Introduction to MIPS : Decisions II (15) Garcia, Spring 2013 © UCB

Inequalities in MIPS (4/4)

 # a:$s0, b:$s1  
slt $t0,$s0,$s1 # $t0 = 1 if a<b" 
beq $t0,$0,skip # skip if a >= b  
 <stuff> " # do if a<b  
skip:!

Two independent variations possible:
Use slt $t0,$s1,$s0 instead of
slt $t0,$s0,$s1!

Use bne instead of beq!

CS61C L07 Introduction to MIPS : Decisions II (16) Garcia, Spring 2013 © UCB

Immediates in Inequalities

§  There is also an immediate version of slt to
test against constants: slti!
ú  Helpful in for loops

 if (g >= 1) goto Loop!
 Loop: ". . .  

slti $t0,$s0,1 # $t0 = 1 if  
 # $s0<1 (g<1)  
beq $t0,$0,Loop # goto Loop  
 # if $t0==0  
! ! ! ! # (if (g>=1))

C!

M 
I 
P 
S!

An slt è beq pair means if(… ≥ …)goto…

CS61C L07 Introduction to MIPS : Decisions II (17) Garcia, Spring 2013 © UCB

What about unsigned numbers?

§  Also unsigned inequality instructions:
 sltu, sltiu!

…which sets result to 1 or 0 depending on
unsigned comparisons

§  What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1!
sltu $t1, $s0, $s1!

CS61C L07 Introduction to MIPS : Decisions II (18) Garcia, Spring 2013 © UCB

MIPS Signed vs. Unsigned – diff meanings!
§  MIPS terms Signed/Unsigned “overloaded”:

ú  Do/Don't sign extend
   (lb, lbu)!

ú  Do/Don't overflow
   (add, addi, sub, mult, div)!
   (addu, addiu, subu, multu, divu)!

ú  Do signed/unsigned compare
   (slt, slti/sltu, sltiu)!

CS61C L07 Introduction to MIPS : Decisions II (19) Garcia, Spring 2013 © UCB

 What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);!

Loop:addi $s0,$s0,-1 # i = i - 1  
 slti $t0,$s1,2 # $t0 = (j < 2)  
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0!
 slt $t0,$s1,$s0 # $t0 = (j < i)  
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0"

a) j < 2 && j < i  
a) j ≥ 2 && j < i  
b) j < 2 && j ≥ i  
b) j ≥ 2 && j ≥ i  
c) j > 2 && j < i  
c) j < 2 || j < i  
d) j ≥ 2 || j < i  
d) j < 2 || j ≥ i  
e) j ≥ 2 || j ≥ i  
e) j > 2 || j < i!

($s0=i, $s1=j)!

CS61C L07 Introduction to MIPS : Decisions II (20) Garcia, Spring 2013 © UCB

“And in conclusion…”

§  To help the conditional branches make
decisions concerning inequalities, we introduce:
“Set on Less Than” called
slt, slti, sltu, sltiu!

§  One can store and load (signed and unsigned)
bytes as well as words with lb, lbu!

§  Unsigned add/sub don’t cause overflow
§  New MIPS Instructions:

 sll, srl, lb, lbu  
!slt, slti, sltu, sltiu  
!addu, addiu, subu!

CS61C L07 Introduction to MIPS : Decisions II (21) Garcia, Spring 2013 © UCB

Bonus Slides

CS61C L07 Introduction to MIPS : Decisions II (22) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (1/3)

§  Choose among four alternatives depending on
whether k has the value 0, 1, 2 or 3. Compile
this C code:

switch (k) {  
 case 0: f=i+j; break; /* k=0 */  
 case 1: f=g+h; break; /* k=1 */  
 case 2: f=g–h; break; /* k=2 */  
 case 3: f=i–j; break; /* k=3 */  
}!

CS61C L07 Introduction to MIPS : Decisions II (23) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (2/3)

§  This is complicated, so simplify.
§  Rewrite it as a chain of if-else statements,

which we already know how to compile:
if(k==0) f=i+j;  
 else if(k==1) f=g+h;  
 else if(k==2) f=g–h;  
 else if(k==3) f=i–j;!

§  Use this mapping:
 f:$s0, g:$s1, h:$s2,  
i:$s3, j:$s4, k:$s5!

CS61C L07 Introduction to MIPS : Decisions II (24) Garcia, Spring 2013 © UCB

Example: The C Switch Statement (3/3)

§  Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0  
 add $s0,$s3,$s4 #k==0 so f=i+j  
 j Exit # end of case so Exit  
L1: addi $t0,$s5,-1 # $t0=k-1  
 bne $t0,$0,L2 # branch k!=1  
 add $s0,$s1,$s2 #k==1 so f=g+h  
 j Exit # end of case so Exit  
L2: addi $t0,$s5,-2 # $t0=k-2  
 bne $t0,$0,L3 # branch k!=2  
 sub $s0,$s1,$s2 #k==2 so f=g-h  
 j Exit # end of case so Exit  
L3: addi $t0,$s5,-3 # $t0=k-3  
 bne $t0,$0,Exit # branch k!=3  
 sub $s0,$s3,$s4 # k==3 so f=i-j  
Exit:!

