
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine

Structures

Lecture 08
MIPS Instruction Representation I

2012-02-08
TA/Guest
Lecturer

Zachary Bush

www.nytimes.com/2010/02/19/technology/19china.html

“SO MANY GADGETS, SO MANY ACHES” - NYT

Laptops “do not meet any of the ergonomic
requirements for a computer system”. Touch
screens “should not be used heavily for
typing” Texting is a problem because thumb
bones have two bones instead of three … “if
you want to get injured, do a lot of texting”.
Advice? Take a break

CS61C L08 : MIPS Instruction Representation I (2) Garcia, Spring 2013 © UCB

Review

 To help the conditional branches make
decisions concerning inequalities, we
introduce: “Set on Less Than” called
slt, slti, sltu, sltiu

 One can store and load (signed and
unsigned) bytes as well as words with lb,
lbu

 Unsigned add/sub don’t cause overflow

 New MIPS Instructions:
sll, srl, lb, lbu
slt, slti, sltu, sltiu
addu, addiu, subu

CS61C L08 : MIPS Instruction Representation I (3) Garcia, Spring 2013 © UCB

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

61C Levels of Representation (abstractions)

lw $t0, 0($s2)
lw $t1, 4($s2)
sw $t1, 0($s2)
sw $t0, 4($s2)
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description (Circuit
Schematic Diagrams)

Architecture
Implementation

Register File

ALU

CS61C L08 : MIPS Instruction Representation I (4) Garcia, Spring 2013 © UCB

Overview – Instruction Representation
 Big idea: stored program
 consequences of stored program

 Instructions as numbers

 Instruction encoding

 MIPS instruction format for Add
instructions

 MIPS instruction format for Immediate,
Data transfer instructions

CS61C L08 : MIPS Instruction Representation I (5) Garcia, Spring 2013 © UCB

Big Idea: Stored-Program Concept
 Computers built on 2 key principles:
 Instructions are represented as bit patterns - can

think of these as numbers.

 Therefore, entire programs can be stored in
memory to be read or written just like data.

 Simplifies SW/HW of computer systems:
 Memory technology for data also used for

programs

CS61C L08 : MIPS Instruction Representation I (6) Garcia, Spring 2013 © UCB

Consequence #1: Everything Addressed
 Since all instructions and data are stored in

memory, everything has a memory address:
instructions, data words
 both branches and jumps use these

 C pointers are just memory addresses: they
can point to anything in memory
 Unconstrained use of addresses can lead to nasty

bugs; up to you in C; limits in Java

 One register keeps address of instruction
being executed: “Program Counter” (PC)
 Basically a pointer to memory: Intel calls it Instruction

Address Pointer, a better name

CS61C L08 : MIPS Instruction Representation I (7) Garcia, Spring 2013 © UCB

Consequence #2: Binary Compatibility
 Programs are distributed in binary form
 Programs bound to specific instruction set

 Different version for Macintoshes and PCs

 New machines want to run old programs
(“binaries”) as well as programs compiled to
new instructions

 Leads to “backward compatible” instruction
set evolving over time

 Selection of Intel 8086 in 1981 for 1st IBM PC
is major reason latest PCs still use 80x86
instruction set (Pentium 4); could still run
program from 1981 PC today

CS61C L08 : MIPS Instruction Representation I (8) Garcia, Spring 2013 © UCB

Instructions as Numbers (1/2)
 Currently all data we work with is in

words (32-bit blocks):
 Each register is a word.
 lw and sw both access memory one word at a

time.

 So how do we represent instructions?
 Remember: Computer only understands 1s and

0s, so “add $t0,$0,$0” is meaningless.

 MIPS wants simplicity: since data is in words,
make instructions be words too

CS61C L08 : MIPS Instruction Representation I (9) Garcia, Spring 2013 © UCB

Instructions as Numbers (2/2)
 One word is 32 bits, so divide instruction

word into “fields”.

 Each field tells processor something
about instruction.

 We could define different fields for each
instruction, but MIPS is based on
simplicity, so define 3 basic types of
instruction formats:
 R-format

 I-format

 J-format

CS61C L08 : MIPS Instruction Representation I (10) Garcia, Spring 2013 © UCB

Instruction Formats
 I-format: used for instructions with

immediates, lw and sw (since offset
counts as an immediate), and branches
(beq and bne),
 (but not the shift instructions; later)

 J-format: used for j and jal

 R-format: used for all other instructions

 It will soon become clear why the
instructions have been partitioned in this
way.

CS61C L08 : MIPS Instruction Representation I (11) Garcia, Spring 2013 © UCB

R-Format Instructions (1/5)
 Define “fields” of the following number of

bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32

 For simplicity, each field has a name:

 Important: On these slides and in book, each
field is viewed as a 5- or 6-bit unsigned
integer, not as part of a 32-bit integer.
 Consequence: 5-bit fields can represent any number

0-31, while 6-bit fields can represent any number 0-
63.

6 5 5 5 65

opcode rs rt rd functshamt

CS61C L08 : MIPS Instruction Representation I (12) Garcia, Spring 2013 © UCB

R-Format Instructions (2/5)
 What do these field integer values tell us?
 opcode: partially specifies what instruction it is
 Note: This number is equal to 0 for all R-Format

instructions.

 funct: combined with opcode, this number
exactly specifies the instruction

 Question: Why aren’t opcode and funct
a single 12-bit field?
 We’ll answer this later.

CS61C L08 : MIPS Instruction Representation I (13) Garcia, Spring 2013 © UCB

R-Format Instructions (3/5)

 More fields:
 rs (Source Register): generally used to specify

register containing first operand
 rt (Target Register): generally used to specify

register containing second operand (note that
name is misleading)

 rd (Destination Register): generally used to
specify register which will receive result of
computation

CS61C L08 : MIPS Instruction Representation I (14) Garcia, Spring 2013 © UCB

R-Format Instructions (4/5)

 Notes about register fields:
 Each register field is exactly 5 bits, which means

that it can specify any unsigned integer in the
range 0-31. Each of these fields specifies one of
the 32 registers by number.

 The word “generally” was used because there
are exceptions that we’ll see later. E.g.,
 mult and div have nothing important in the rd

field since the dest registers are hi and lo

 mfhi and mflo have nothing important in the rs
and rt fields since the source is determined by the
instruction (see COD)

CS61C L08 : MIPS Instruction Representation I (15) Garcia, Spring 2013 © UCB

R-Format Instructions (5/5)

 Final field:
 shamt: This field contains the amount a shift

instruction will shift by. Shifting a 32-bit word
by more than 31 is useless, so this field is only
5 bits (so it can represent the numbers 0-31).

 This field is set to 0 in all but the shift
instructions.

 For a detailed description of field usage
for each instruction, see green insert in
COD
(You can bring with you to all exams)

CS61C L08 : MIPS Instruction Representation I (16) Garcia, Spring 2013 © UCB

R-Format Example (1/2)

 MIPS Instruction:
add $8,$9,$10

opcode = 0 (look up in table in book)

funct = 32 (look up in table in book)

rd = 8 (destination)

rs = 9 (first operand)

rt = 10 (second operand)

shamt = 0 (not a shift)

CS61C L08 : MIPS Instruction Representation I (17) Garcia, Spring 2013 © UCB

R-Format Example (2/2)

 MIPS Instruction:
add $8,$9,$10

Decimal number per field representation:

Binary number per field representation:

hex representation: 012A 4020hex

decimal representation: 19,546,144ten

Called a Machine Language Instruction

0 9 10 8 320

000000 01001 01010 01000 10000000000
hex

CS61C L08 : MIPS Instruction Representation I (18) Garcia, Spring 2013 © UCB

Administrivia
 Remember to look at Appendix A (also on

SPIM website), for MIPS assembly
language details, including “assembly
directives”, etc.

 Other administrivia, TAs?

CS61C L08 : MIPS Instruction Representation I (19) Garcia, Spring 2013 © UCB

I-Format Instructions (1/4)
 What about instructions with

immediates?
 5-bit field only represents numbers up to the

value 31: immediates may be much larger than
this

 Ideally, MIPS would have only one instruction
format (for simplicity): unfortunately, we need to
compromise

 Define new instruction format that is
partially consistent with R-format:
 First notice that, if instruction has immediate, then

it uses at most 2 registers.

CS61C L08 : MIPS Instruction Representation I (20) Garcia, Spring 2013 © UCB

I-Format Instructions (2/4)

 Define “fields” of the following number of
bits each: 6 + 5 + 5 + 16 = 32 bits

 Again, each field has a name:

 Key Concept: Only one field is inconsistent with
R-format. Most importantly, opcode is still in
same location.

6 5 5 16

opcode rs rt immediate

CS61C L08 : MIPS Instruction Representation I (21) Garcia, Spring 2013 © UCB

I-Format Instructions (3/4)

 What do these fields mean?
 opcode: same as before except that, since there’s

no funct field, opcode uniquely specifies an
instruction in I-format

 This also answers question of why R-format has two
6-bit fields to identify instruction instead of a single
12-bit field: in order to be consistent as possible with
other formats while leaving as much space as
possible for immediate field.

 rs: specifies a register operand (if there is one)

 rt: specifies register which will receive result of
computation (this is why it’s called the target register
“rt”) or other operand for some instructions.

CS61C L08 : MIPS Instruction Representation I (22) Garcia, Spring 2013 © UCB

I-Format Instructions (4/4)

 The Immediate Field:
 addi, slti, sltiu, the immediate is sign-

extended to 32 bits. Thus, it’s treated as a
signed integer.

 16 bits  can be used to represent immediate
up to 216 different values

 This is large enough to handle the offset in a
typical lw or sw, plus a vast majority of values
that will be used in the slti instruction.

 We’ll see what to do when the number is too
big in our next lecture…

CS61C L08 : MIPS Instruction Representation I (23) Garcia, Spring 2013 © UCB

I-Format Example (1/2)

 MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

CS61C L08 : MIPS Instruction Representation I (24) Garcia, Spring 2013 © UCB

I-Format Example (2/2)

 MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5
FFCEhexdecimal representation:
584,449,998ten

CS61C L08 : MIPS Instruction Representation I (25) Garcia, Spring 2013 © UCB

Peer Instruction
Which instruction has same representation as 35ten?

a) add $0, $0, $0
b) subu $s0,$s0,$s0
c) lw $0, 0($0)
d) addi $0, $0, 35
e) subu $0, $0, $0
Registers numbers and names:

0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23:
$s7

Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

CS61C L08 : MIPS Instruction Representation I (26) Garcia, Spring 2013 © UCB

Peer Instruction Answer
Which instruction has same representation as 35ten?

a) add $0, $0, $0
b) subu $s0,$s0,$s0
c) lw $0, 0($0)
d) addi $0, $0, 35
e) subu $0, $0, $0
Registers numbers and names:

0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23:
$s7

Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

35 0 0 0

0 3200 0 0

8 0 0 35

16 3500 16 16

0 3500 0 0

CS61C L08 : MIPS Instruction Representation I (27) Garcia, Spring 2013 © UCB

In conclusion…
 Simplifying MIPS: Define instructions to

be same size as data word (one word) so
that they can use the same memory
(compiler can use lw and sw).

 Computer actually stores programs as a
series of these 32-bit numbers.

 MIPS Machine Language Instruction:
32 bits representing a single instruction

opcode rs rt immediate
opcode rs rt rd functshamtR

I

