UCB CS61C : Machine
Structures

Lecture 08 |
MIPS Instruction Representation |

2012-02-08

“SO MANY GADGETS, SO MANY ACHES” - NYT

Laptops “do not meet any of the ergonomic
requirements for a computer system”. Touch
screens “should not be used heavily for
typing” Texting is a problem because thumb
bones have two bones instead of three ... “if
you want to get injured, do a lot of texting”.
Advice? Take a break

www . nytimes.com/2010/02/19/technology/19china.htmil

Review

To help the conditional branches make
decisions concerning inequalities, we
Introduce: “Set on Less Than” called

One can store and load (sighed and
unsigned) bytes as well as words with

Unsigned add/sub don’t cause overflow
New MIPS Instructions:

sil, srl, Ib, Ibu

slt, slt1, sltu, sltiu

addu, addiu, subu

CS61C L08 : MIPS Instruction Representation | (2) Garcia, Spring 2013 © UCB

61C Levels of Representation (abstractions)

High Level Language tem v[k];
Program (e.g., C) \% kﬁ) vik+1];
_ vik+1l] = temp;
Compiler

/ = - 7 r

Assembler

Machine Language
Program (MIPS)
SWachine

Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description (Circuit
- _pochematic Diagrams)

CS61C L08 : MIPS Instruction Representation | (3) Garcia, Spring 2013 © UCB

Overview — Instruction Representation

= Big idea: stored program
o consequences of stored program

Instructions as numbers
Instruction encoding

MIPS instruction format for Add
Instructions

MIPS instruction format for Immediate,
Data transfer instructions

. CS61C L08 : MIPS Instruction Representation | (4) Garcia, Spring 2013 © UCB

Big Idea: Stored-Program Concept

= Computers built on 2 key principles:

o |nstructions are represented as bit patterns - can
think of these as numbers.

o Therefore, entire programs can be stored Iin
memory to be read or written just like data.

= Simplifies SW/HW of computer systems:

= Memory technology for data also used for
programs

. CS61C L08 : MIPS Instruction Representation | (5) Garcia, Spring 2013 © UCB

Consequence #1: Everything Addressed

= Since all instructions and data are stored In
memory, everything has a memory address:
Instructions, data words

= poth branches and jumps use these
= C pointers are just memory addresses: they

can point to anything in memory

o Unconstrained use of addresses can lead to nasty
bugs; up to you in C; limits in Java

= One register keeps address of instruction
being executed:

o Basically a pointer to memory: Intel calls it Instruction
Address Pointer, a better name

. CS61C L08 : MIPS Instruction Representation | (6) Garcia, Spring 2013 © UCB

Consequence #2: Binary Compatibility

= Programs are distributed in binary form
= Programs bound to specific instruction set
= Different version for and PCs

= New machines want to run old programs
(“binaries”) as well as programs compiled to
new instructions

= Leads to “backward compatible” instruction
set evolving over time

= Selection of Intel 8086 in 1981 for 1st IBM PC
IS major reason latest PCs still use 80x86
Instruction set (Pentium 4); could still run
program from 1981 PC today

CS61C L08 : MIPS Instruction Representation | (7) Garcia, Spring 2013 © UCB

Instructions as Numbers (1/2)

= Currently all data we work with Is In
words (32-bit blocks):

o Each register is a word.

o fw and sw both access memory one word at a
time.

= S0 how do we represent instructions?

o= Remember: Computer only understands 1s and
0s, so “ " IS meaningless.

= MIPS wants simplicity: since data is in words,
make Iinstructions be words too

. CS61C L08 : MIPS Instruction Representation | (8) Garcia, Spring 2013 © UCB

Instructions as Numbers (2/2)
= One word Is 32 bits, so divide instruction
word Into “ i

Each field tells processor something
about instruction.

= \WWe could define different fields for each

Instruction, but MIPS 1s based on
simplicity, so define 3 basic types of
Instruction formats:

o R-format
o |-format
o J-format

. CS61C L08 : MIPS Instruction Representation | (9) Garcia, Spring 2013 © UCB

Instruction Formats

I-format: used for instructions with
Immediates, and (since offset

counts as an immediate), and branches
(beq and bne),

o (but not the shift instructions; later)

J-format: used for § and

R-format: used for all other instructions

It will soon become clear why the
Instructions have been partitioned in this

. CS61C L08 : MIPS Instruction Representation | (10) Garcia, Spring 2013 © UCB

R-Format Instructions (1/5)

= Define “fields” of the following number of
bitseach: 6+5+5+5+5+6 =32

6)) O) 6
= For simplicity, each field has a name:
opcode| rs rt rd |shamt| funct

o . On these slides and in book, each
field is viewed as a 5- or 6-bit unsigned
Integer, not as part of a 32-bit integer.

o Consequence: 5-bit fields can represent any number
0-31, while 6-bit fields can represent any number O-
63.

. CS61C L08 : MIPS Instruction Representation | (11) Garcia, Spring 2013 © UCB

R-Format Instructions (2/5)

= What do these field integer values tell us?
o opcode: partially specifies what instruction it is

= Note: This number is equal to O for all R-Format
Instructions.

o funct: combined with opcode, this number

exactly specifies the instruction
= Question: Why aren’t opcode and funct
a single 12-bit field?
o We’ll answer this later.

. CS61C L08 : MIPS Instruction Representation | (12) Garcia, Spring 2013 © UCB

R-Format Instructions (3/5)

= More fields:
(Source Register): used to specify
register containing first operand
(Target Register): used to specify
register containing second operand (note that
name Is misleading)

(Destination Register): used to
specify register which will receive result of
computation

. CS61C L08 : MIPS Instruction Representation | (13) Garcia, Spring 2013 © UCB

R-Format Instructions (4/5)

= Notes about register fields:

o Each register field is exactly 5 bits, which means
that it can specify any unsigned integer in the
range 0-31. Each of these fields specifies one of
the 32 registers by number.

= The word “generally” was used because there
are exceptions that we’ll see later. E.g.,

- mult and div have nothing important in the rd
field since the dest registers are hi and lo

- mFhi1 and mFlo have nothing important in the rs
and rt fields since the source is determined by the

Instruction (see COD)

. CS61C L08 : MIPS Instruction Representation | (14) Garcia, Spring 2013 © UCB

R-Format Instructions (5/5)

= Final field:
: This field contains the amount a shift

Instruction will shift by. Shifting a 32-bit word
by more than 31 is useless, so this field is only
5 bits (so it can represent the numbers 0-31).

o This field is set to O in all but the shift
Instructions.

= For a detailed description of field usage
for each instruction, see green insert in

COD
(You can bring with you to all exams)

57 7
:;"/ ‘.‘/,,.A, I:-" /
| W N Garcia, Spring 2013 © UCB

CS61C L08 : MIPS Instruction Representation | (15)

R-Format Example (1/2)

= MIPS Instruction:
add $8,%$9,%10

opcode = 0 (look up In table in book)
funct = 32 (look up in table in book)
rd = 8 (destination)

rs =9 (first)

rt =10 (second

shamt = 0 (not a shift)

CS61C L08 : MIPS Instruction Representation | (16) Garcia, Spring 2013 © UCB

R-Format Example (2/2)

= MIPS Instruction:
add $8,%9,%10
Decimal number per field representation:

O 9 10 38 O

Blnary number per field representation:

OOOODO

hex representation: 012A 4020heX
decimal representation: 19,546,144,
Called a

. CS61C L08 : MIPS Instruction Representation | (17) Garcia, Spring 2013 © UCB

Administrivia
= Remember to look at Appendix A (also on
SPIM website), for MIPS assembly

language details, including “assembly
directives”, etc.

= Other administrivia, TAsS?

. CS61C L08 : MIPS Instruction Representation | (18) Garcia, Spring 2013 © UCB

I-Format Instructions (1/4)

= What about instructions with
Immediates?
o 5-pit field only represents numbers up to the

value 31: immediates may be much larger than
this

o |deally, MIPS would have only one instruction
format (for simplicity): unfortunately, we need to
compromise

= Define new instruction format that is
partially consistent with R-format:

o First notice that, Iif instruction has immediate, then
It uses at most 2 registers.

. CS61C L08 : MIPS Instruction Representation | (19) Garcia, Spring 2013 © UCB

I-Format Instructions (2/4)

= Define “fields” of the following number of
bits each: 6 + 5+ 5 + 16 = 32 bits

6 O) 16
= Again, each field has a name:

opcode| rs rt immediate

. Only one field is inconsistent with
R-format. Most importantly, opcode is still in

same location.

. CS61C L08 : MIPS Instruction Representation | (20) Garcia, Spring 2013 © UCB

I-Format Instructions (3/4)

= \WWhat do these fields mean?

= opcode: same as before except that, since there’s
no funct field, opcode uniquely specifies an
Instruction in [-format

= This also answers question of why R-format has two
6-Dbit fields to identify instruction instead of a single
12-bit field: in order to be consistent as possible with
other formats while leaving as much space as
possible for immediate field.

. specifies a register operand (if there is one)

. specifies register which will receive result of

computation (this is why it’s called the register
“rt”) or other operand for some instructions.

CS61C L08 : MIPS Instruction Representation | (21) Garcia, Spring 2013 © UCB

I-Format Instructions (4/4)

= The Immediate Field:
o addin, slti, sltiu, the immediate Is
to 32 bits. Thus, It's treated as a
signed integer.

16 bits =» can be used to represent immediate
up to 21° different values

This is large enough to handle the offset in a
typical Iw or sw, plus a vast majority of values

that will be used in the st Iinstruction.

We’'ll see what to do when the number Is too
big In our next lecture...

. CS61C L08 : MIPS Instruction Representation | (22) Garcia, Spring 2013 © UCB

I-Format Example (1/2)

= MIPS Instruction:
addi $21,%22,-50

opcode = 8 (look up In table in book)

rs = 22 (reqgister containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

CS61C L08 : MIPS Instruction Representation | (23) Garcia, Spring 2013 © UCB

I-Format Example (2/2)

= MIPS Instruction:
addi $21,%22,-50

Decimal/field representation:

8 22 21 -50
Binary/field representation:
001000 10110{10101} 1111111111001110

hexadecimal representation: 22D5

dEEﬁ'ﬁaéxrepresentation:
584,449,998

ten

. CS61C L08 : MIPS Instruction Representation | (24) Garcia, Spring 2013 © UCB

Peer Instruction

Which instruction has same representation as 35;.,?
a) add $0, $0, $0 pcode| rs | rt rd | shamt [funct

b) subu $s0,$s0,$5s0lopcode| rs | rt rd | shamt [funct
c) lw $0, 0($0) bpcode| rs | rt offset

d) addi $0, $0, 35 ppcode] rs | rt immediate
e) subu $0, $0, $0 ppcode[rs | rt rd | shamt [funct

Registers numbers and names:
$: %O, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23:
)

Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode =0, funct = 35
addi: opcode =8
Iw: opcode = 35

g CS61C L08 : MIPS Instruction Representation | (25) Garcia, Spring 2013 © UCB

Peer Instruction Answer

Which instruction has same representation as 35,.,?
a) add $0, $0, $0 0 0 0 0 32

b) subu $s0,$s0,$s0| © 16 35
c) lw $0, 0($0) 35 0
d) addi $0, $0, 35 35
e) subu $0, $0, $0 0 0 35

Reqgisters numbers and hames:
$: %O, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23:
)

Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode =0, funct = 35
addi: opcode =8
Iw: opcode = 35

. CS61C L08 : MIPS Instruction Representation | (26) Garcia, Spring 2013 © UCB

In conclusion...

= Simplifying MIPS: Define instructions to
be same size as data word (one word) so
that they can use the same memory
(compiler can use |lw and sw).

= Computer actually stores programs as a
series of these 32-bit numbers.

32 bits representing a single instruction

opcode| rs rt rd |shamt| funct
opcode| rs rt immediate

. CS61C L08 : MIPS Instruction Representation | (27) Garcia, Spring 2013 © UCB

Popular eetronics

JANUARY, 1875

HE era al tha computer in avary
home=-a favorite fopic among
Snisncesfiction writers—has arrived)
s mada possinle by the PopuLaR
ELECTRONCSIMITS Altalr 8800, a full-
Blown computer that can hold its cwn
‘Ajainst sophsticated minicomputars
Ao anthe markal. And it dossn't cost
sseveral thousand doliars. In fagt, it's
ina coior TW-receiver's price class
=unger 8400 for a complete kit.

_&:I:hﬂ Altair 8300 s not a “demon-
“glraior” or souped-ug calculator. It is
ﬁli’masipuwerful computer aver pre-
senled = 3 construction project inany
ECIranice megazine. |n many ways, it
IESE0LE & revolutionary develop-

M nelectronic dasign and think-

I8ir 8300 {3 4. parallsl B-nit
drass computar with an

EXCLUSIVE!

. ALTAIR 8800

The most powerful minicomputer
project ever presented—-can be built
for under $400

BY H. EDWARD ROBERTS AND WILLIAM YATES

fral processing unit |s a new LS| chip
that is many limes mors powerful than
previcus IC processors. 1 can ac-
commadate 255 inputs and 256 oul-
puts, all diractly addressanle, and has
72 ‘basic machina instructicns {as
comparad with 20 in the usugl
minicompuler). This means thet you
can wits an extensive gnd detalled
program. The basic camputer has
256 words of memeory, but it can be
economically expanded for 65,000
words, Thus, with full expansion, up o
85,000 subroutings canall ba going at
the sama time,

The basic computer is a complete
5y5m. The program can be enterad
via switches located on the front
panel, groviding & LED readaul 4o bi-
mary format. The verv-low-costiermi-
nal presentad in PoruLam ELec-
TROMGE fasl manth can alio be uzed.

PROCESSOR DESCRIPTION
Procassor! 8 hit parallzl
Max. mamany;: 68,000 words (2l dirpctiy
AdolrEsgabdi]

Ingtfuction cycle bime; 2 ps |min.)

Inpals and outouls: 256 [all directly ad
dragsabla)

KNumber af basic

e inslructiong:

Interrept stru

pvels plus soflwa
Number ol auxiliary regisiers: 8 plus
program caunter and

Mamory type: semilconductor (dynamls

or-static AAM, RIM, PROM)
Mamcey accass time: 850 ns static RAN,
, 420 0r 150 ns dynamic Ram

