
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine Structures

 Lecture 11 – Introduction to MIPS
 Procedures II & Logical Ops

 2013-02-15

Prof Paul Debevec (UC Berkeley PhD 1996) at
USC has been working to create virtual
humans to keep alive the memory AND
INTERACTIONS w/people into a 3D hologram.
He is recording the Holocaust survivors, who
tell their story, answering 500 questions about
themselves. They’re in a race against time…

Sr Lecturer SOE
Dan Garcia

www.washingtonpost.com/national/holograms-seen-as-tools-to-teach-
future-generations-about-holocaust-retell-survivors-stories/
2013/02/02/558cab32-6d58-11e2-8f4f-2abd96162ba8_story_1.html!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (2) Garcia, Spring 2013 © UCB

Review
§  Functions called with jal, return with jr $ra.
§  The stack is your friend: Use it to save anything you

need. Just leave it the way you found it!
§  Instructions we know so far…

Arithmetic: add, addi, sub, addu, addiu, subu!
Memory: lw, sw, lb, sb

Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

§  Registers we know so far
ú  All of them!
ú  There are CONVENTIONS when calling procedures!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (3) Garcia, Spring 2013 © UCB

The Stack (review)
§  Stack frame includes:
ú  Return “instruction” address
ú  Parameters
ú  Space for other local variables

§  Stack frames contiguous
blocks of memory; stack pointer tells
where bottom of stack frame is

§  When procedure ends, stack frame is
tossed off the stack; frees memory for
future stack frames frame"

frame"

frame"

frame"

$sp"

0xFFFFFFFF"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (4) Garcia, Spring 2013 © UCB

Stack

§  Last In, First Out (LIFO) data structure

main ()!
{ a(0); !
}!

void a (int m)!
{ b(1); !
}!
void b (int n)!
{ c(2); !
}!
void c (int o)!
{ d(3); !
}!
void d (int p)!
{ !
}!

stack!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack
grows
down"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (5) Garcia, Spring 2013 © UCB

§  Pointers in C allow access to deallocated memory,
leading to hard-to-find bugs !
int *ptr () {  

!int y;  
!y = 3;  
!return &y; }  

main () {  
!int *stackAddr,content;  
!stackAddr = ptr();  
!content = *stackAddr;  
!printf("%d", content); /* 3 */  
!content = *stackAddr;  
!printf("%d", content); }/*13451514 */!

Who cares about stack management?

main"

ptr() 
(y==3)"

SP"

main"
SP"

main"

printf() 
(y==?)"

SP"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (6) Garcia, Spring 2013 © UCB

Memory Management
§  How do we manage memory?
§  Code, Static storage are easy:

they never grow or shrink
§  Stack space is also easy:

stack frames are created and destroyed in
last-in, first-out (LIFO) order

§  Managing the heap is tricky:
memory can be allocated / deallocated at
any time

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (7) Garcia, Spring 2013 © UCB

Heap Management Requirements
§  Want malloc() and free() to run quickly.
§  Want minimal memory overhead
§  Want to avoid fragmentation* –

when most of our free memory is in many small
chunks
ú  In this case, we might have many free bytes but not

be able to satisfy a large request since the free bytes
are not contiguous in memory.

* This is technically called external fragmention"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (8) Garcia, Spring 2013 © UCB

Heap Management
§  An example

ú  Request R1 for 100 bytes
ú  Request R2 for 1 byte
ú  Memory from R1 is freed
ú  Request R3 for 50 bytes

R2 (1 byte)"

R1 (100 bytes)"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (9) Garcia, Spring 2013 © UCB

Heap Management
§  An example

ú  Request R1 for 100 bytes
ú  Request R2 for 1 byte
ú  Memory from R1 is freed
   Memory has become

fragmented!
   We have to keep track of

the two freespace regions

ú  Request R3 for 50 bytes
   We have to search the

data structures holding
the freespace to find one
that will fit! Choice here...

R2 (1 byte)"

R3?"

R3?"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (10) Garcia, Spring 2013 © UCB

Administrivia
§  Project (Pt 1) due Sunday @ 23:59:59pm

ú  Quick Peer Instruction question: how are you doing
on part 1 of the project?
a)  [0, 20%) done
b)  [20, 40%) done
c)  [40, 60%) done
d)  [60, 80%) done
e)  [80, 100%] done

§  TAs, anything?

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (11) Garcia, Spring 2013 © UCB

§  CalleR: the calling function
§  CalleE: the function being called
§  When callee returns from executing, the caller

needs to know which registers may have
changed and which are guaranteed to be
unchanged.

§  Register Conventions: A set of generally
accepted rules as to which registers will be
unchanged after a procedure call (jal) and
which may be changed.

Register Conventions (1/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (12) Garcia, Spring 2013 © UCB

§  $0: No Change. Always 0.
§  $s0-$s7: Restore if you change. Very important,

that’s why they’re called saved registers. If the
callee changes these in any way, it must restore
the original values before returning.

§  $sp: Restore if you change. The stack pointer
must point to the same place before and after
the jal call, or else the caller won’t be able to
restore values from the stack.

§  HINT -- All saved registers start with S!

Register Conventions (2/4) – saved

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (13) Garcia, Spring 2013 © UCB

§  $ra: Can Change. The jal call itself will
change this register. Caller needs to save on
stack if nested call.

§  $v0-$v1: Can Change. These will contain the
new returned values.

§  $a0-$a3: Can change. These are volatile
argument registers. Caller needs to save if they
are needed after the call.

§  $t0-$t9: Can change. That’s why they’re
called temporary: any procedure may change
them at any time. Caller needs to save if they’ll
need them afterwards.

Register Conventions (2/4) – volatile

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (14) Garcia, Spring 2013 © UCB

§  What do these conventions mean?
ú  If function R calls function E, then function R must

save any temporary registers that it may be using
onto the stack before making a jal call.

ú  Function E must save any S (saved) registers it
intends to use before garbling up their values, and
restore them after done garbling

§  Remember: caller/callee need to save only
temporary/saved registers they are using, not
all registers.

Register Conventions (4/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (15) Garcia, Spring 2013 © UCB

r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 ... ### PUSH REGISTER(S) TO STACK?  
 jal e # Call e  
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to caller of r  

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to r!

Peer Instruction

What does r have to push on the stack before “jal e”?

a) 1 of ($s0,$sp,$v0,$t0,$a0,$ra)  
b) 2 of ($s0,$sp,$v0,$t0,$a0,$ra)  
c) 3 of ($s0,$sp,$v0,$t0,$a0,$ra)  
d) 4 of ($s0,$sp,$v0,$t0,$a0,$ra)  
e) 5 of ($s0,$sp,$v0,$t0,$a0,$ra)!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (16) Garcia, Spring 2013 © UCB

What does r have to push on the stack before “jal e”?

a) 1 of ($s0,$sp,$v0,$t0,$a0,$ra)  
b) 2 of ($s0,$sp,$v0,$t0,$a0,$ra)  
c) 3 of ($s0,$sp,$v0,$t0,$a0,$ra)  
d) 4 of ($s0,$sp,$v0,$t0,$a0,$ra)  
e) 5 of ($s0,$sp,$v0,$t0,$a0,$ra)!

r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 ... ### PUSH REGISTER(S) TO STACK?  
 jal e # Call e  
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to caller of r  

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to r!

Peer Instruction Answer

Volatile! -- need to push Saved

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (17) Garcia, Spring 2013 © UCB

§  Register Conventions: Each register has a
purpose and limits to its usage. Learn these and
follow them, even if you’re writing all the code
yourself.

§  Logical and Shift Instructions
ú  Operate on bits individually, unlike arithmetic, which

operate on entire word.
ú  Use to isolate fields, either by masking or by shifting

back and forth.
ú  Use shift left logical, sll,for multiplication by powers

of 2
ú  Use shift right logical, srl,for division by powers of 2

of unsigned numbers (unsigned int)
ú  Use shift right arithmetic, sra,for division by powers

of 2 of signed numbers (int)
§  New Instructions:
and, andi, or, ori, sll, srl, sra!

“And in Conclusion…”

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (18) Garcia, Spring 2013 © UCB

Bonus slides

§  These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

§  The slides will appear in the order they would
have in the normal presentation

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (19) Garcia, Spring 2013 © UCB

§  So far, we’ve done arithmetic (add, sub,addi),
mem access (lw and sw), & branches and jumps.

§  All of these instructions view contents of register as
a single quantity (e.g., signed or unsigned int)

§  New Perspective: View register as 32 raw bits
rather than as a single 32-bit number
ú  Since registers are composed of 32 bits, wish to access

individual bits (or groups of bits) rather than the whole.

§  Introduce two new classes of instructions
ú  Logical & Shift Ops

Bitwise Operations

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (20) Garcia, Spring 2013 © UCB

§  Two basic logical operators:
ú  AND: outputs 1 only if all inputs are 1
ú  OR: outputs 1 if at least one input is 1

§  Truth Table: standard table listing all possible
combinations of inputs and resultant output

Logical Operators (1/3)

a! b! a AND b! a OR b!

0! 0! 0! 0!
0! 1! 0! 1!
1! 0! 0! 1!
1! 1! 1! 1!

a! a AND b! a OR b!

0! 0! b!

1! b! 1!
=!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (21) Garcia, Spring 2013 © UCB

§  Logical Instruction Syntax:
 1 2,3,4

ú  where
 1) operation name
 2) register that will receive value
 3) first operand (register)
 4) second operand (register) or immediate
(numerical constant)

§  In general, can define them to accept > 2 inputs,
but in the case of MIPS assembly, these accept
exactly 2 inputs and produce 1 output
ú  Again, rigid syntax, simpler hardware

Logical Operators (2/3)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (22) Garcia, Spring 2013 © UCB

§  Instruction Names:
ú  and, or: Both of these expect the third argument

to be a register
ú  andi, ori: Both of these expect the third

argument to be an immediate

§  MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is produced
by the respective bit 0’s of the inputs, bit 1 by
the bit 1’s, etc.
ú  C: Bitwise AND is & (e.g., z = x & y;)
ú  C: Bitwise OR is | (e.g., z = x | y;)

Logical Operators (3/3)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (23) Garcia, Spring 2013 © UCB

§  Note that anding a bit with 0 produces a 0 at the
output while anding a bit with 1 produces the
original bit.

§  This can be used to create a mask.
ú  Example:

 1011 0110 1010 0100 0011 1101 1001 1010!
! !0000 0000 0000 0000 0000 1111 1111 1111!

ú  The result of anding these:
 0000 0000 0000 0000 0000 1101 1001 1010!

mask:

mask last 12 bits

Uses for Logical Operators (1/3)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (24) Garcia, Spring 2013 © UCB

§  The second bitstring in the example is called
a mask. It is used to isolate the rightmost 12
bits of the first bitstring by masking out the
rest of the string (e.g. setting to all 0s).

§  Thus, the and operator can be used to set
certain portions of a bitstring to 0s, while
leaving the rest alone.
ú  In particular, if the first bitstring in the above

example were in $t0, then the following
instruction would mask it:
 andi! $t0,$t0,0xFFF!

Uses for Logical Operators (2/3)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (25) Garcia, Spring 2013 © UCB

§  Similarly, note that oring a bit with 1 produces
a 1 at the output while oring a bit with 0
produces the original bit.

§  Often used to force certain bits to 1s.
ú  For example, if $t0 contains 0x12345678,

then after this instruction:
 ori !$t0, $t0, 0xFFFF!

… $t0 will contain 0x1234FFFF
   (i.e., the high-order 16 bits are untouched, while the

low-order 16 bits are forced to 1s).

Uses for Logical Operators (3/3)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (26) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 1/8
§  The Fibonacci numbers are defined as follows:

F(n) = F(n – 1) + F(n – 2),
F(0) and F(1) are defined to be 1

§  In scheme, this could be written:
(define (Fib n)
(cond !((= n 0) 1)  
 ((= n 1) 1)  
 (else (+!(Fib (- n 1))  
 (Fib (- n 2)))))!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (27) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 2/8
§  Rewriting this in C we have:

int fib(int n) {! ! ! !
if(n == 0) { return 1; } ! !
if(n == 1) { return 1; } ! !
return (fib(n - 1) + fib(n - 2));!

}!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (28) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 3/8
§  Now, let’s translate this to MIPS!
§  You will need space for three words on the stack
§  The function will use one $s register, $s0!
§  Write the Prologue:
fib:!

addi $sp, $sp, -12 !# Space for three words!

sw $ra, 8($sp)! !# Save return address!
sw $s0, 4($sp)! !# Save s0!

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (29) Garcia, Spring 2010 © UCB

fin:!

lw $s0, 4($sp) !
lw $ra, 8($sp)!

addi $sp, $sp, 12!

jr $ra!

Restore $s0
Restore return address
Pop the stack frame
Return to caller

° Now	 write	 the	 Epilogue:	

Example: Fibonacci Numbers 4/8

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (30) Garcia, Spring 2010 © UCB

addi!$v0, $zero, 1!

beq !$a0, $zero, fin!

addi $t0, $zero, 1!

beq !$a0, $t0, fin!

Continued on next slide. . . !

$v0 = 1

$t0 = 1

° Finally,	 write	 the	 body.	 	 The	 C	 code	 is	 below.	 	 Start	 by	
translating	 the	 lines	 indicated	 in	 the	 comments	

int fib(int n) { ! ! ! !  
if(n == 0) { return 1; } /*Translate Me!*/
if(n == 1) { return 1; } /*Translate Me!*/
return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 5/8

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (31) Garcia, Spring 2010 © UCB

$a0 = n - 1
Need $a0 after jal
fib(n - 1)
restore $a0
$a0 = n - 2

addi $a0, $a0, -1!

sw $a0, 0($sp)!

jal fib!

lw $a0, 0($sp)!

addi $a0, $a0, -1!

° Almost	 there,	 but	 be	 careful,	 this	 part	 is	 tricky!	

int fib(int n) {  
 . . .  
 return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 6/8

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (32) Garcia, Spring 2010 © UCB

add $s0, $v0, $zero!

jal fib!

add $v0, $v0, $s0!

To the epilogue and beyond. . .!

Place fib(n – 1)
somewhere it won’t get
clobbered
fib(n - 2)
$v0 = fib(n-1) + fib(n-2)

° Remember	 that	 $v0	 is	 caller	 saved!	

int fib(int n) {  
 . . .  
 return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 7/8

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (33) Garcia, Spring 2010 © UCB

° Here’s	 the	 complete	 code	 for	 reference:	

Example: Fibonacci Numbers 8/8

fib: !addi $sp, $sp, -12!

! !sw $ra, 8($sp)!

! !sw $s0, 4($sp)!

! !addi $v0, $zero, 1!

! !beq $a0, $zero, fin!

! !addi $t0, $zero, 1!

! !beq $a0, $t0, fin!

! !addi $a0, $a0, -1!

! !sw $a0, 0($sp)!

! !jal fib!

! !lw $a0, 0($sp)!

! !addi $a0, $a0, -1!

! !add $s0, $v0, $zero!

! !jal fib!

! !add $v0, $v0, $s0!

fin: !lw $s0, 4($sp)!

! !lw $ra, 8($sp)!

! !addi $sp, $sp, 12!

! !jr $ra!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (34) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (1/5)
main() {  
int i,j,k,m; /* i-m:$s0-$s3 */  
...  
i = mult(j,k); ...  
m = mult(i,i); ...!

}!

int mult (int mcand, int mlier){  
int product;!

 product = 0;  
while (mlier > 0) {  
 product += mcand;  
 mlier -= 1; }  
return product;  
}!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (35) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (2/5)
__start:!

... !

add $a0,$s1,$0! !# arg0 = j  
add $a1,$s2,$0 ! !# arg1 = k  
jal mult ! ! !# call mult  
add $s0,$v0,$0 ! !# i = mult()  
...!

 add $a0,$s0,$0 ! !# arg0 = i  
add $a1,$s0,$0 ! !# arg1 = i  
jal mult ! ! !# call mult  
add $s3,$v0,$0 ! !# m = mult()  
...!

! j __exit!
main() {  
int i,j,k,m; /* i-m:$s0-$s3 */  
...  
i = mult(j,k); ...  
m = mult(i,i); ... }!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (36) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (3/5)

§  Notes:
ú  main function ends with a jump to __exit, not
jr $ra, so there’s no need to save $ra onto
stack

ú  all variables used in main function are saved
registers, so there’s no need to save these onto
stack

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (37) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (4/5)
mult: ! ! ! ! ! ! ! !

!add $t0,$0,$0 !# prod=0 Loop:  
 slt $t1,$0,$a1 # mlr > 0?  
 beq $t1,$0,Fin # no=>Fin  
 add $t0,$t0,$a0 # prod+=mc  
 addi $a1,$a1,-1 # mlr-=1  
 j Loop # goto Loop!

Fin:  
 add $v0,$t0,$0 # $v0=prod  
 jr $ra # return!

int mult (int mcand, int mlier){  
int product = 0;  
while (mlier > 0) {  
 product += mcand;  
 mlier -= 1; }  
return product;  
}!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (38) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (5/5)

§  Notes:
ú  no jal calls are made from mult and we don’t

use any saved registers, so we don’t need to save
anything onto stack

ú  temp registers are used for intermediate
calculations (could have used s registers, but
would have to save the caller’s on the stack.)

ú  $a1 is modified directly (instead of copying into a
temp register) since we are free to change it

ú  result is put into $v0 before returning (could also
have modified $v0 directly)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (39) Garcia, Spring 2013 © UCB

§  Parents (main) leaving for weekend
§  They (caller) give keys to the house to kid

(callee) with the rules (calling
conventions):
ú  You can trash the temporary room(s), like the den

and basement (registers) if you want, we don’t
care about it

ú  BUT you’d better leave the rooms (registers) that
we want to save for the guests untouched. “these
rooms better look the same when we return!”

§  Who hasn’t heard this in their life?

Parents leaving for weekend analogy (1/5)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (40) Garcia, Spring 2013 © UCB

§  Kid now “owns” rooms (registers)
§  Kid wants to use the saved rooms for a wild,

wild party (computation)
§  What does kid (callee) do?

ú  Kid takes what was in these rooms and puts them
in the garage (memory)

ú  Kid throws the party, trashes everything (except
garage, who ever goes in there?)

ú  Kid restores the rooms the parents wanted saved
after the party by replacing the items from the
garage (memory) back into those saved rooms

Parents leaving for weekend analogy (2/5)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (41) Garcia, Spring 2013 © UCB

§  Same scenario, except before parents return
and kid replaces saved rooms…

§  Kid (callee) has left valuable stuff (data) all
over.
ú  Kid’s friend (another callee) wants the house

for a party when the kid is away
ú  Kid knows that friend might trash the place

destroying valuable stuff!
ú  Kid remembers rule parents taught and now

becomes the “heavy” (caller), instructing friend
(callee) on good rules (conventions) of
house.

Parents leaving for weekend analogy (3/5)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (42) Garcia, Spring 2013 © UCB

§  If kid had data in temporary rooms (which were
going to be trashed), there are three options:
ú  Move items directly to garage (memory)
ú  Move items to saved rooms whose contents have

already been moved to the garage (memory)
ú  Optimize lifestyle (code) so that the amount you’ve

got to shlep stuff back and forth from garage
(memory) is minimized.
   Mantra: “Minimize register footprint”

§  Otherwise: “Dude, where’s my data?!”

Parents leaving for weekend analogy (4/5)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (43) Garcia, Spring 2013 © UCB

§  Friend now “owns” rooms (registers)
§  Friend wants to use the saved rooms for a wild,

wild party (computation)
§  What does friend (callee) do?

ú  Friend takes what was in these rooms and puts
them in the garage (memory)

ú  Friend throws the party, trashes everything (except
garage)

ú  Friend restores the rooms the kid wanted saved after
the party by replacing the items from the garage
(memory) back into those saved rooms

Parents leaving for weekend analogy (5/5)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (44) Garcia, Spring 2013 © UCB

§  Move (shift) all the bits in a word to the left or
right by a number of bits.
ú  Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000!

0000 0000 0001 0010 0011 0100 0101 0110!

§  Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000!

0011 0100 0101 0110 0111 1000 0000 0000!

Shift Instructions (review) (1/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (45) Garcia, Spring 2013 © UCB

§  Shift Instruction Syntax:
 1 2,3,4

…where
 1) operation name
 2) register that will receive value
 3) first operand (register)
 4) shift amount (constant < 32)

§  MIPS shift instructions:
1. sll (shift left logical): shifts left and fills emptied bits

with 0s
2. srl (shift right logical): shifts right and fills emptied

bits with 0s
3. sra (shift right arithmetic): shifts right and fills

emptied bits by sign extending

Shift Instructions (2/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (46) Garcia, Spring 2013 © UCB

§  Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000!

0000 0000 0001 0010 0011 0100 0101 0110!

•  Example: shift right arithmetic by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000!

1111 1111 1001 0010 0011 0100 0101 0110!

Shift Instructions (3/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (47) Garcia, Spring 2013 © UCB

§  Since shifting may be faster than
multiplication, a good compiler usually
notices when C code multiplies by a power of
2 and compiles it to a shift instruction:
a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

§  Likewise, shift right to divide by powers of 2

(rounds towards -∞)
ú  remember to use sra!

Shift Instructions (4/4)

