UCB CS61C : Machine Structures

Lecture 11 - Introduction to MIPS
Procedures Il & Logical Ops

2013-02-15

VIRTUAL HUMANS... 3

Prof Paul Debevec (UC Berkeley PhD 1996) at ¢
USC has been working fo create virtual

humans to keep alive the memory AND

INTERACTIONS w/people into a 3D hologram.

He is recording the Holocaust survivors, who

tell their story, answering 500 questions about

themselves. They're in a race against time...
www.washingtonpost.com/national/holograms-seen-as-tools-to-teach-

future-generations-about-holocaust-retell-survivors-stories/
' U U scab DA S B I 4 abd96l162bac 0 Nt

P,

= Functions called with return with

= The stack is your friend: Use it o save anything you
need. Just leave it the way you found if!

= |nstructions we know so far...
Arithmetic:
Memory:
Decision:
Unconditional Branches (Jumps):

= Registers we know so far
o All of them!

. There are CONVENTIONS when calling procedures!

L
- 72 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (2) Garcia, Spring 2013 © UCB

The Stack (review)

= Stack frame includes:
o Return “instruction” address
o Parameters

= Space for other local variables ;. ceerrEEr o
= Stack frames contiguous

blocks of memory; stack pointer tells
where bottom of stack frame is

= When procedure ends, stack frame is
tossed off the stack; frees memory for
future stack frames

$sp -

L
-~ 72 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (3) Garcia, Spring 2013 © UCB

Stack

= |astIn, First Out (LIFO) data structure

main ()

{ a(0);

void a (int m)
{ b(1);
}

void ¢ (int o)
{ d(3);
}

void d (int p)

Stack Pointer —

stack

Who cares about stack management?

= Pointers in C allow access to deallocated memory,
leading to hard-to-find bugs !

int *ptr () {
int y;
3;

return &y;

main () { SP
int *stackAddr,content;

stackAddr = ptr();

content = *stackAddr;

printf("%d", content); /* 3 */
content = *stackAddr;

7./ printf("%d", content); }/%13451514 */

4 P
; /" /]
~~” C€S6IC L1 Infroduction to MIPS : Procedures Il & Logical Ops (5) Garcia, Spring 2013 © UCB

Memory Management

= How do we manage memory?

they never grow or shrink

stack frames are created and destroyed in

last-in, first-out (LIFO) order

memory can be allocated / deallocated at
any fime

i
) -~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (6) Garcia, Spring 2013 © UCB

Heap Management Requirements

Wantmalloc () and £ree () to run quickly.
Want minimal memory overhead

Want to avoid fragmentation* -
when most of our free memory is in many small
chunks

= |n this case, we might have many free bytes but not
be able to satisty a large request since the free bytes

are not contiguous in memory.

* This is technically called external fragmention

CS61C L11 Introduction to MIPS : Procedures Il & Logical Ops (7) Garcia, Spring 2013 © UCB

Heap Management

= An example
Request R1 for 100 bytes
Request R2 for 1 byte
Memory from R1 is freed
Request R3 for 50 bytes

Heap Management

= An example
= Request R1 for 100 bytes
o Request R2 for 1 byte

= Memory from R1 is freed
- Memory has become

fragmented! R2 (1 byte)\

- We have to keep track of
the two freespace regions

= Request R3 for 50 bytes

- We have to search the
data structures holding
the freespace to find one
that will fit! Choice here...

Administrivio
= Project (Pt 1) due Sunday @ 23:59:59pm

= Quick Peer Instruction question: how are you doing
on part 1 of the project?
a) [0, 20%) done
b) [20, 40%) done

c) [40, 60%) done
d) [60, 80%) done
e) [80, 100%] done

= TAs, anything?

L
) -~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (10) Garcia, Spring 2013 © UCB

Register Conventions (1/4)

= CalleR: the calling function
= CalleE: the function being called

= When callee returns from executing, the caller
needs to know which registers may have
changed and which are guaranteed to be
unchanged.

= Register Conventions: A set of generally
accepted rules as to which registers will be
unchanged after a procedure call (jal) and
which may be changed.

L
) - 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (1) Garcia, Spring 2013 © UCB

Register Conventions (2/4) - saved

= $0: No Change. Always 0.

= $s50-$s7: Restore if you change. Very important,
that's why they're called saved registers. If the
callee changes these in any way, it must restore
the original values before returning.

= $sp: Restore if you change. The stack pointer
must point to the same place before and after
the jal call, or else the caller won't be able to
restore values from the stack.

= HINT -- All saved registers start with S!

L
) -~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (12) Garcia, Spring 2013 © UCB

Register Conventions (2/4) -

Sra: , ge. The Ral call itself will
change this register. Caller needs to save on

stacklt nestedcall.

Sv0-Svl: . These will contain the
new returned values.

$a0-$a3: Car These are volatile
argument registers. Caller needs to save if they

aré needed after the call.

$t0-$t9: . That's why they're
ﬁglled temporary: an procegure may C,P%ng,?
the %Tanytme. Cailer needs to save it they'll

nee em arrerwdaras.

i
) -~ 2 CS6I1C LN Introduction to MIPS : Procedures Il & Logical Ops (13) Garcia, Spring 2013 © UCB

Register Conventions (4/4)

= What do these conventions mean?

o |f function R calls function £, then function R must
save any temporary registers that it may be using

onto the stack before making a jal call.

= Function £ must save any S (saved) registers it
infends to use before garbling up their values, and
restore them after done garbling

= Remember: caller/callee need to save only
temporary/saved registers , ot
all registers.

L
-~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (14) Garcia, Spring 2013 © UCB

Peer Instruction

r: # R/W $s0,$v0,$t0,S$a0,S$sp,Sra,mem
- ##4# PUSH REGISTER(S) TO STACK?
jal e # Call e
ﬁ R/W $s0,$v0,$t0,$a0,S$sp, Sra,mem
#

if.Sra Return to caller of r

.« R/W $s0,$v0,$t0,$a0,$sp, Sra,mem
jr Sra # Return to r

e.:

What does r have to push on the stack before “jal e"?

a) of 0,$sp,$v0,$t0,$a0,$ra)
of 0,$sp,$v0,$t0,$a0,S$ra)
c) of 0,$sp,$v0,$t0,$a0,Sra)
of 0,sp,Sv0,S$t0,5a0,Sra)
of 0,$sp,Sv0,$t0,5a0,S5ra)

L
-~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (15) Garcia, Spring 2013 © UCB

Peer Instruction Answer

r: # R/W $s0,$v0,$t0,S$a0,S$sp,Sra,mem
- ##4# PUSH REGISTER(S) TO STACK?
jal e # Call e
ﬁ R/W $s0,$v0,$t0,$a0,S$sp, Sra,mem
#

if.Sra Return to caller of r

.« R/W $s0,$v0,$t0,$a0,$sp, Sra,mem
jr Sra # Return to r

e.:

What does r have to push on the stack before “jal e"?

Volatile! -- need to push
a) of (sO $sp/,|Sv0,S$t0,$a0,S$ra
b) of ($s0,S$sp,/Sv0,S$t0,$a0,Sra
c) of (0 Ssp,|Sv0,S$t0,$a0,Sra
(
(

of 0,Ssp,Sv0,S$t0,S$a0,Sra
of 0,Ssp,Sv0,$t0,S$a0, Sra

L
-~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (16) Garcia, Spring 2013 © UCB

“And in Conclusion...”

= Register Conventions: Each reglster has a
Pur pose and limits fo its usage. Learn these and
llow Them even if you're writing all the code
yourselt.

= Logical and Shift Instructions
o Operate on bits individually, unlike arithmetic, which

operate on entire word.

o Use to isolate fields, either by masking or by shifting
back and forth.

: Ufsg shift left logical, , for multiplication by powers
0

o Use shift right logical, , for division by powers of 2
of unsigned numbers (uns:.gned int)

= Use shift right arithmetic, , for division by powers
of 2 of signed numbers (int)

= New Insfruciions:
Jrl / /

\"' CS61C L11 Introduction to MIPS : Procedures Il & Logical Ops (17) Garcia, Spring 2013 © UCB

Bonus slides

» These are exira slides that used to be
included in lecture notes, but have been

moved to this, the “bonus” area to serve as @
supplement.

= The slides will appear in the order they would
have in the normal presentation

) B

J

i

Garcia, Spring 2013 © UCB

Bitwise Operations

= So far, we've done arithmetic (add, sub, addi),
mem access (1w and sw), & branches and jumps.

All of these instructions view contents of register as
a single quantity (e.g., signed or unsigned int)

New Perspective: View register as 32 raw bits

rather than as a single 32-bit number

o Since registers are composed of 32 bits, wish to access
individual bits (or groups of bits) rather than the whole.

Infroduce two new classes of instructions

o Logical & Shift Ops

2 CS61C L1 Introduction to MIPS : Procedures Il & Logical Ops (19) Garcia, Spring 2013 © UCB

Logical Operators (1/3)

= Two basic logical operators:
= AND: outputs 1 only if all inputs are 1
= OR: outputs 1 if input is 1

= Truth Table: standard table listing all possible
combinations of inputs and resultant output

a b a AND b a OR b

00

0

0 0 0 0 b
1 0 | b |
1 1

/

/

/// /
- !,-'
|
N

4 i
i y
/

Logical Operators (2/3)

= Logical Instruction Syntax:
1 23,4
= where
1) operation name
2) reqister that will receive value
3) first operand (register)

4) second operand (register) or immediate
(numerical constant)

o gw ,en%rol, can define them to OCC%pT > 2 inputs,
U f

in the case of M|PS adasembly, ese accept
exactly 2 inputs and produce 1 output

= Again, rigid syntax, simpler hardware

L
) -~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (21) Garcia, Spring 2013 © UCB

Logical Operators (3/3)

= |nstruction Names:

: Both of these expect the third argument
to be a register

: Both of these expect the third
argument to be an immediate

= MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is produced
by the respective bit 0's of the inputs, bit 1 by
the bit 1's, etc.

= C: Bitwise AND is & (e.g., |
o C:Bitwise ORis | (e.g.,)

CS61C L11 Introduction to MIPS : Procedures Il & Logical Ops (22) Garcia, Spring 2013 © UCB

L
) S CS61C L1 Introduction to MIPS : Procedures |l & Logical Ops (23)

Uses for Logical Operators (1/3)

= Note that anding a bit with 0 produces a 0 at the
output while anding a bit with 1 produces the
original bit.
This can be used to create a mask.

o Example:
1011 0110 1010 0100 0011|1101 1001 1010
mask: 0000 0000 0000 0000 0000|1111 1111 1111

= The result of anding these:
0000 0000 0000 0000 0000(1101 1001 1010

mask last 12 bits

Garcia, Spring 2013 © UCB

Uses for Logical Operators (2/3)

= The second bitstring in the example is called
a mask. Itis used to isolate the rightmost 12
bits of the first bitstring by masking out the
rest of the string (e.g. setting to all 0s).

= Thus, the and operator can be used to set
certain portions of a bitstring to 0s, while
leaving the rest alone.

o |n particular, if the first bitstring in the above

example were in $t0, then the following
instruction would mask it:

=~~~ CS6IC L1 Infroduction fo MIPS : Procedures Il & Logical Ops (24) Garcia, Spring 2013 © UCB

Uses for Logical Operators (3/3)

= Similarly, note that oxing a bit with 1 produces

a 1 atf the output while oxring a bit with O
produces the original bit.

Often used to force certain bits fo 1s.

= For example, if $£0 contains 0x
then after this instruction:

ori $t0, St0, OxFFFF
... $t0 will contain 0x FFFF

- (i.e., the high-order 16 bits are untouched, while the
low-order 16 bits are forced to 1s).

, -
- 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (25) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 1/8

» The Fibonacci numbers are defined as follows:

F(O) and F(1) are definea tobe 1
= |n scheme, this could be written:

A y r &
[~ - <~ CS6IC L Introduction o MIPS : Procedures Il & Logical Ops (26) Garcig, Spring 2013 © UCB

Example: Fibonacci Numbers 2/8

= Rewriting this in C we have:

i
) - 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (27) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 3/8

= Now, let’s translate this to MIPS!

= You will need space for three words on the stack
= The function will use one $s register, $s0

= Write the Prologue:

fib:
addi S$sp, Ssp, -12

sw Sra, 8(Ssp)
sw $s0, 4(Ssp)

i
) -~ 7~ CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (28) Garcia, Spring 2013 © UCB

Example: Fibonacci Numbers 4/8

° Now write the Epilogue:

fin:

lw $s0, 4(S$sp) # Restore $s0

lw $Sra, 8($sp) # Restore return address
addi $sp, $sp, 12 # Pop the stack frame
jr Sra # Return to caller

L
-~ 2 CS6IC L12 Introduction to MIPS : Procedures Il & Logical Ops (29) Garcia, Spring 2010 © UCB

Example: Fibonacci Numbers 5/8

° Finally, write the body. The C code is below. Start by
translating the lines indicated in the comments

addi Sv0, Szero, 1
beq $a0, Szero, fin
addi $tO0, Szero, 1
beq $a0, S$tO0, fin

Continued on next slide.

L
-~ “~ .2 (CS6IC L12 Introduction to MIPS : Procedures Il & Logical Ops (30) Garcia, Spring 2010 © UCB

Example: Fibonacci Numbers 6/8

° Almost there, but be careful, this part is tricky!

addi $a0, $aoO, #%a00=n-1

sw $a0, O($sp) # Need $a0 after jal
jal fib # fib(n - 1)

lw $a0, 0(S$sp) # restore $a0
addi Sa0, S$ao, # $00=n-2

. CS61C L12 Introduction to MIPS : Procedures Il & Logical Ops (31) Garcia, Spring 2010 © UCB

Example: Fibonacci Numbers 7/8

° Remember that $vo is caller saved!

add $s0, $v0, S$zero g p|gcefibin=1)

somewhere it won't get
clobbered
jal fib # fib(n - 2)

add $v0, $vO, $sO # $v0 = fib(n-1) + fib(n-2)

To the epilogue and beyond.

L
-~ 2 CS6IC L12 Introduction to MIPS : Procedures Il & Logical Ops (32) Garcia, Spring 2010 © UCB

Example: Fibonacci Numbers 8/8

° Here's the complete code for reference:

fib:

Ssp, -12
8($sp)

4 ($sp)
addi SvO0, Szero, 1
beq $a0, Szero,
addi $t0, Szero, 1
beq $a0, $tO,
addi $a0, S$a0, -1
sw Sa0, O(Ssp)
jal fib

addi Ssp,
sw Sra,

sw S$sO,

fin

fin fin:

CS61C L12 Introduction to MIPS : Procedures Il & Logical Ops (33)

lw Sa0, O(Ssp)

addi S$a0, S$a0O, -1
add $s0, S$SvO0, Szero
jal fib

add SvO, SvO, S$sO
lw $s0, 4(Ssp)
8($sp)

Ssp, 12

lw Sra,
addi S$sp,

jr Sra

Garcia, Spring 2010 © UCB

Bonus Example: Compile This (1/5)

main() {
int i,j,k,m;

i = mult(j,k); ...
m mult(i,i); ...

}

int mult (int mcand, int mlier) {
int product;

product = O;
while (mlier > 0)
product += mcand;
mlier -= 1; }
. return product;
y 6 / }

A / |
="~ “ €S61C LN Introduction to MIPS : Procedures Il & Logical Ops (34) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (2/5)

__start:

add Sa0,S$sl,SO0
add Sal,S$s2,S$0
jal mult
add S$s0,Sv0, SO

add $a0,$s0,$0
add $al,$s0,S$0

jal mult
add S$s3,S$Sv0,SO0

j _ exit

i
-~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (35) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (3/5)

= Notes:

= main function ends with ajumpto ___exit, not

jr Sra, so there’s no need to save $ra onto
stack

o all variables used in main function are saved

registers, so there’s no need to save these onto
stack

2 CS61C L1 Introduction to MIPS : Procedures Il & Logical Ops (36) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (4/5)

add S$t0,S0,S0
slt S$tl1,$0,Sal
beq $t1,S0,Fin
add S$tO0,S$t0,s$a0
addi Sal, Sal,-1
J Loop

add S$vO0,$t0,S$0
jr Sra

i
) - 72 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (37) Garcia, Spring 2013 © UCB

Bonus Example: Compile This (5/5)

= Notes:

= no jal calls are made from mult and we don't
use any saved registers, so we don’t need to save
anything onto stack

= temp registers are used for intermediate

calculations (could have used s registers, but
would have to save the caller’s on the stack.)

= $al is modified directly (instead of copying into a
temp register) since we are free to change it

o result is put into $v0 before returning (could also
have modified $v0 directly)

== - <" €S61C LTl Infroduction to MIPS : Procedures Il & Logical Ops (38) Garcia, Spring 2013 © UCB

Parents leaving for weekend analogy (1/5)

= Parents |) leaving for weekend

= They |) give keys to the house to kid
() with the rules |
)
= You can trash the temporary room(s), like the den

and basement |) if you want, we don’t
care about it

BUT you’d better leave the rooms |) that
we want to save for the guests untouched. “these
rooms better look the same when we return!”

= Who hasn't heard this in their life?

o e

CS61C L1 Introduction to MIPS : Procedures Il & Logical Ops (39) Garcia, Spring 2013 © UCB

Parents leaving for weekend analogy (2/5)

= Kid now “owns” rooms |)

» Kid wants to use the saved rooms for a wild,
wild party |)
= \What does kid |) do?

= Kid takes what was in these rooms and puts them
in the garage |)

= Kid throws the party, (except
garage, who ever goes in there?)

= Kid restores the rooms the parents wanted saved

after the party by replacing the items from the
garage |) back into those saved rooms

vl b
, - 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (40) Garcia, Spring 2013 © UCB

Parents leaving for weekend analogy (3/5)

= Same scenario, except before parents return
and kid replaces saved rooms. ..

= Kid |) has left valuable stuff |) all
over.

o Kid’s friend |) wants the house
for a party when the kid is away

= Kid knows that friend might frash the place
destroying valuable stuff!

= Kid remembers rule parents taught and now
becomes the “heavy” (), instructing friend
() on good rules |) of
y 64 / house.

[~ - <2 CS6IC L Introduction to MIPS : Procedures Il & Logical Ops (41) Garcia, Spring 2013 © UCB

Parents leaving for weekend analogy (4/5)

= [fkid had data in temporary rooms (which were
going to be trashed), there are three options:

= Move items directly to garage |)

= Move items to saved rooms whose contents have
already been moved to the garage |)

= Optimize lifestyle |) so that the amount you've
got to shlep stuff back and forth from garage
() is minimized.

= Mantra: “Minimize register footprint”
= Otherwise: “Dude, where's my data?

|II

L
-~ 2 CS6I1C LN Introduction to MIPS : Procedures Il & Logical Ops (42) Garcia, Spring 2013 © UCB

Parents leaving for weekend analogy (5/5)

= Friend now “owns” rooms | |

* Friend wants to use the saved rooms for a wild,
wild party |)

= What does friend |) do?

o Friend takes what was in these rooms and puts
them in the garage |)

= Friend throws the party, trashes everything (except
garage)
= Friend restores the rooms the kid wanted saved after

the party by replacing the items from the garage
) back into those saved rooms

"~ - <" CS6IC LTl Infroduction fo MIPS : Procedures Il & Logical Ops (43) Garcig, Spring 2013 © UCB

Shift Instructions (review) (1/4)

= Move (shift) all the bits in a word to the left or
right by a number of bits.

= Example: shift right by 8 bits

0000 0000
= Example: shift left by 8 bits

\ \
/

0000 0000

L
) -~ 2 CS6IC LN Introduction to MIPS : Procedures Il & Logical Ops (44) Garcia, Spring 2013 © UCB

Shift Instructions (2/4)

= Shift Instruction Syntax:
1 23,4
...Where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

= MIPS shift instructions:

1. (shift left logical): shifts left and fills emptied bits
with Os

2. (shift right logical): shifts right and fills emptied
bits with 0s

3. (shift right arithmetic): shifts right and fills
emptied bits by sign extending

== - < €S61C LTl Infroduction to MIPS : Procedures Il & Logical Ops (45) Garcia, Spring 2013 © UCB

Shift Instructions (3/4)

= Example: shift right arithmetic by 8 bits
0

s s

0000 0000

o Example: shift right arithmetic by 8 bits

.

Garcia, Spring 2013 © UCB

Shift Instructions (4/4)

= Since shifting may be faster than
multiplication, a good compiler usually
notices when C code multiplies by a power of
2 and compiles it to a shift instruction:
(in C)

would compile to:

(in MIPS)
= Likewise, shift right to divide by powers of 2

(rounds towards -00)
= remember to use

e CS61C L11 Introduction to MIPS : Procedures Il & Logical Ops (47) Garcia, Spring 2013 © UCB

