inst.eecs.berkeley.edu/~c561c

UCB CS61C : Machine Structures

Lecture 12 - Caches |
‘ 2013-02-20
Lecturer SOE |
Dan Garcia Midterm exam in 12 days!

BITCASA OFFERS INFINITE STORAGE!

A Mountain View startup promises to do
Dropbox one better. 10GB free storage, and
(pause for effect) they are offering INFINITE
storage for only $10/month ($99/yr, $69/yr if
you sign up before March). Data available
anytime, everywhere. Game changer?

bitcasa.com
The Big Picture
Computer _ _ _ _ _ Keyboard,
Processor Mouse
(active)

[Control ||
“brain”

Datapath)

(“brawn”)

474 -

data live
when
running)

N Display,
“ Printer

Motivation : Processor-Memory Gap

1989 first Intel CPU with cache on chip }JPI’OC
1998 Pentium IIl has two cache levels on chip 55%/year
10000

+ (2X/1.5yr)
“Moore’s Law” f
1000 /
o0 / Processor-Memory
10

Performance Gap
=" DRAM
/_Md ‘\» 7%lyear

(grows 50%l/year)
1t r—
(2X/10yrs)

Performance

D D o> O D D N o> P S D>
SR MK P P P C P . AP P P P P M
FEEEEE S S S

Year

47 -

6 Great Ideas in Computer Architecture
1. Layers of Representation/Interpretation
2. Moore’s Law

3. Principle of Locality/Memory Hierarchy
4. Parallelism
5
6

. Performance Measurement & Improvement
. Dependability via Redundancy

47 -

lLe., storage in

Memory Hierarchy computer systems
= Processor

= holds data in register file (~100 Bytes)

= Registers accessed on nanosecond timescale
= Memory (we’ll call “main memory*)

= More capacity than registers (~Gbytes)

= Access time ~50-100 ns

= Hundreds of clock cycles per memory access?!
= Disk

= HUGE capacity (virtually limitless)

= VERY slow: runs ~milliseconds

474 -

Memory Caching

= Mismatch between processor and memory
speeds leads us to add a new level: a
memory cache

= Implemented with same IC processing
technology as the CPU (usually integrated on
same chip): faster but more expensive than
DRAM memory.

= Cache is a copy of a subset of main memory.

= Most processors have separate caches for
instructions and data.

47 -

Characteristics of the Memory Hierarchy

Processor
Inclusive—
14-8 bytes (word) what is in L1$
) is a subset of
Increasing L1s what is in L2$
distance V832 is a subset of
from the L2$ what is in MM
processor T A BioaR thatis a =
in access . subset of is in
time Main Memory SM

1,024+ bytes
(disk sector = page)
Secondary Memory

@ (Relative) size of the memory at each level

Typical Memory Hierarchy

= The Trick: present processor with as much memory
as is available in the cheapest technology at the

speed offered by the fastfest technology

On-Chip Components .-
— i Secondary
- 5 : . Sf:g;"d Main M(eDmifY
Datapath| 3 Cache Memory Or Flash)
E g (SRAM) (DRAM)
o .| ® -~ - -

Speed (#cycles): 12’s 1's 10’s 100’s 10,000’s

Size (bytes): 100’s 10K’s M’s G’s Ts
Cost: highest lowest

Memory Hierarchy

47 -

= If level closer to Processor, it is:
= Smaller
= Faster
= More expensive
= subset of lower levels (contains most recently used

data)

= Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)

= Memory Hierarchy presents the processor
with the illusion of a very large & fast memory

474 -

Memory Hierarchy Analogy: Library

= You're writing a ferm paper (Processor) at a table in Doe
= Doe Library is equivalent to disk
= essentially limitless capacity, very slow to refrieve a book
= Table is main memory
= smaller capacity: means you must return book when table fills up
= easier and faster fo find a book there once you've already retrieved it
= Open books on table are cache
= smoaller capacity: can have very few open books fit on table; again, when
table fills up, you must close a book
= much, much faster fo refrieve data
= Ilusion created: whole library open on the tabletop
= Keep as many recently used books open on table as possible since likely
to use again
a Il_ll"u;.yksepasmwbooksonhbhaspombh,sincefusterﬂmgdngio
i

Memory Hierarchy Basis

474 -

= Cache contains copies of data in memory that
are being used.
= Memory contains copies of data on disk that
are being used.
= Caches work on the principles of temporal
and spatial locality.
= Temporal Locality: if we use it now, chances are
we’ll want fo use it again soon.
= Spatial Locality: if we use a piece of memory,
chances are we'll use the neighboring pieces
soon.

47 -

Two Types of Locality

= Temporal Localily (locality in time)
= If a memory location is referenced then it will tend
to be referenced again soon

= Keep most recently accessed data items closer to
the processor

= Spatial Locality (locality in space)
= If a memory location is referenced, the locations
with nearby addresses will tend to be referenced
soon
=> Move blocks consisting of contiguous words
closer to the processor

47 -

Cache Design (for ANY cache)

= How do we organize cache?
= Where does each memory address map to?

= (Remember that cache is subset of memory, so
multiple memory addresses map to the same
cache location.)

= How do we know which elements are in
cache?

= How do we quickly locate them?

474 -

Direct-Mapped Cache (1/4)

= In a direct-mapped cache, each memory

address is associated with one possible block

within the cache

= Therefore, we only need to look in a single
location in the cache for the data if it exists in the
cache

= Block is the unit of transfer between cache and
memory

474 -

Direct-Mapped Cache (3/4)

Memory Cache 8 Byte Direct
Address Memory Index _ Mapped Cache

= & T N

Block size = 2 bytes

fﬁ"fa‘?‘o‘b’f‘fﬂé"ﬁ;%ﬂ’oc’ R ek
= How does it know right block?
How do we select the byte?
., Mem address 11101?

L] it kn HICH colored
Elock mgm e #o

= What do you do at bogguge claim?

o)

etc

Garcia,

—
E§QH;;HB;qQ’>ma\aNO

How is the Hierarchy Managed?
= regisfers <> memory
= By compiler (or assembly level programmer)
= cache <> main memory
= By the cache controller hardware
= main memory <> disks (secondary storage)
= By the operating system (virtual memory)

= Virtual to physical address mapping assisted by
the hardware (TLB)

= By the programmer (files)

47 -

Direct-Mapped Cache (2/4)

Memory Cache 4 Byte Direct
Address Memory Indo(e)x Mapped Cache
1

2
3

Block size = 1 byte

Cache Location 0 can be
occupied by data from:
= Memory location 0, 4, 8, ...
= 4 blocks = any memory location
that is multiple of 4
What if we wanted a block
to be bigger than one byte?

&Uow»cmuam&um»—c

Direct-Mapped Cache (4/4)

ache yte Direc
Index _Mapped Cache w/Tag!
8§ 1

2 0
4 2
I 3

Tag Data
(Block size = 2 bytes)

at should go in the tag?
= Do we need the entire address?
+ What do all these tags have in common?
= What did we do with the immediate
when we were branch addressin,
always count by bytes?
. Whynotcountbyouche#?

H‘suseﬁllfodmwmnor‘whhfhe
3 same width as the block

Memory

S D e, OB S

!E bl _d Cache#
(CS8IC L12 Caches | 20) Garda,

Issues with Direct-Mapped

= Since multiple memory addresses map to

same cache index, how do we tell which one
is in there?

= What if we have a block size > 1 byte?
= Answer: divide memory address into three

fields
| teeeeeeeeeeeeeeet] i3iiiiiiiif ooool
tag index b
to £heck o et
if have select within
@ correct block block block

TIO Dan’s great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks) |27+ = 2" * 2%
* WIDTH (size of one block, B/block)
WIDTH

[Tag [index| Offset | (size of one block, B/block)

HEIGHT AREA
of blocks) (cache size, B)

474 =

Direct-Mapped Cache Example (2/3)
= Index: (~index into an “array of blocks")
= need to specify correct block in cache
= cache contains 8 B = 22 bytes
= block contains 2 B = 2! bytes
= # blocks/cache
= I_v@oache
bytes/block
= 23 bytes/cache
2" bytes/block
= 22 blocks/cache
= need 2 bits to specify this many blocks

47 -

Direct-Mapped Cache Terminology

= All fields are read as unsigned integers.
* Index

= specifies the cache index (which “row”/block of
the cache we should look in)
= Offset
= once we've found correct block, specifies which
byte within the block we want
* Tag
= the remaining bits after offset and index are
determined; these are used to distinguish between
all the memory addresses that map to the same

@ location

Direct-Mapped Cache Example (1/3)
= Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks
= Sound familiar?
= Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture
= Offset
= need to specify correct byte within a block
= block contains 2 bytes
=2 bytes
= need 1 bit to specify correct byte

Direct-Mapped Cache Example (3/3)
= Tag: use remaining bits as tag

= tag length = addr length - offset - index

=32-1-2bits
= 29 bits

= so tag is leftmost 29 bits of memory address
= Why not full 32 bit address as tag?

= All bytes within block need same address (4b)

= Index must be same for every address within a
block, so it's redundant in tag check, thus can
leave off to save memory (here 10 bits)

47 -

