
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 12 – Caches I
2013-02-20

A Mountain View startup promises to do
Dropbox one better. 10GB free storage, and
(pause for effect) they are offering INFINITE
storage for only $10/month ($99/yr, $69/yr if
you sign up before March). Data available
anytime, everywhere. Game changer?

Lecturer SOE
Dan Garcia

bitcasa.com!

Midterm exam in 12 days!

CS61C L12 Caches I (3) Garcia, Spring 2013 © UCB

6 Great Ideas in Computer Architecture
1.  Layers of Representation/Interpretation
2.  Moore’s Law
3.  Principle of Locality/Memory Hierarchy
4.  Parallelism
5.  Performance Measurement & Improvement
6.  Dependability via Redundancy

CS61C L12 Caches I (4) Garcia, Spring 2013 © UCB

The Big Picture

 Processor#
 (active)#

Computer#

Control#
(“brain”)#

Datapath#
(“brawn”)#

Memory#
(passive)#
(where !

programs, !
data live !

when!
running)#

Devices#
Input#

Output#

Keyboard,  
Mouse!

Display,  
Printer!

Disk,#
Network !

CS61C L12 Caches I (5) Garcia, Spring 2013 © UCB

Memory Hierarchy
§  Processor

ú  holds data in register file (~100 Bytes)
ú  Registers accessed on nanosecond timescale

§  Memory (we’ll call “main memory”)
ú  More capacity than registers (~Gbytes)
ú  Access time ~50-100 ns
ú  Hundreds of clock cycles per memory access?!

§  Disk
ú  HUGE capacity (virtually limitless)
ú  VERY slow: runs ~milliseconds

I.e., storage in
computer systems

CS61C L12 Caches I (6) Garcia, Spring 2013 © UCB

1

10

100

1000

10000

19
80

19

82

19
84

19

86

19
88

19

90

19
92

19

94

19
96

19

98

20
00

20

02

20
04

Pe
rf

or
m

an
ce

Year

“Moore’s Law”!

DRAM!
7%/year!

(2X/10yrs)!

Processor-Memory!
Performance Gap  
(grows 50%/year)!

Motivation : Processor-Memory Gap
µProc!

55%/year!
(2X/1.5yr)!

1989 first Intel CPU with cache on chip!
1998 Pentium III has two cache levels on chip!

CS61C L12 Caches I (7) Garcia, Spring 2013 © UCB

Memory Caching
§  Mismatch between processor and memory

speeds leads us to add a new level: a
memory cache

§  Implemented with same IC processing
technology as the CPU (usually integrated on
same chip): faster but more expensive than
DRAM memory.

§  Cache is a copy of a subset of main memory.
§  Most processors have separate caches for

instructions and data.

CS61C L12 Caches I (8) Garcia, Spring 2013 © UCB

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor
in access
time!

L1$#

L2$#

Main Memory#

Secondary Memory#

Processor#

(Relative) size of the memory at each level!

Inclusive–
what is in L1$
is a subset of
what is in L2$
is a subset of
what is in MM
that is a
subset of is in
SM!

4-8 bytes (word)!

1 to 4 blocks!

1,024+ bytes 
(disk sector = page)!

8-32 bytes (block)!

CS61C L12 Caches I (9) Garcia, Spring 2013 © UCB

Second	

Level	

Cache	

(SRAM)	

Typical Memory Hierarchy

§  The Trick: present processor with as much memory
as is available in the cheapest technology at the
speed offered by the fastest technology

Control!

Datapath!

Secondary!
Memory!

(Disk!
Or Flash)!

On-Chip Components!

R
egFile!

Main!
Memory!
(DRAM)!D

ata	

Cache	

Instr	

Cache	

ITLB	

D
TLB	

Speed (#cycles): ½’s 1’s 10’s 100’s 10,000’s!
Size (bytes): 100’s 10K’s M’s G’s T’s!

 Cost: highest lowest!

CS61C L12 Caches I (10) Garcia, Spring 2013 © UCB

Memory Hierarchy
§  If level closer to Processor, it is:

ú  Smaller
ú  Faster
ú  More expensive
ú  subset of lower levels (contains most recently used

data)

§  Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)

§  Memory Hierarchy presents the processor
with the illusion of a very large & fast memory

CS61C L12 Caches I (11) Garcia, Spring 2013 © UCB

Memory Hierarchy Analogy: Library
§  You’re writing a term paper (Processor) at a table in Doe

§  Doe Library is equivalent to disk
ú  essentially limitless capacity, very slow to retrieve a book

§  Table is main memory
ú  smaller capacity: means you must return book when table fills up
ú  easier and faster to find a book there once you’ve already retrieved it

§  Open books on table are cache
ú  smaller capacity: can have very few open books fit on table; again, when

table fills up, you must close a book
ú  much, much faster to retrieve data

§  Illusion created: whole library open on the tabletop
ú  Keep as many recently used books open on table as possible since likely

to use again
ú  Also keep as many books on table as possible, since faster than going to

library

CS61C L12 Caches I (12) Garcia, Spring 2013 © UCB

Memory Hierarchy Basis
§  Cache contains copies of data in memory that

are being used.
§  Memory contains copies of data on disk that

are being used.
§  Caches work on the principles of temporal

and spatial locality.
ú  Temporal Locality: if we use it now, chances are

we’ll want to use it again soon.
ú  Spatial Locality: if we use a piece of memory,

chances are we’ll use the neighboring pieces
soon.

CS61C L12 Caches I (13) Garcia, Spring 2013 © UCB

Two Types of Locality
§  Temporal Locality (locality in time)

ú  If a memory location is referenced then it will tend
to be referenced again soon

⇒ Keep most recently accessed data items closer to
the processor

§  Spatial Locality (locality in space)
ú  If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon

⇒ Move blocks consisting of contiguous words
closer to the processor

CS61C L12 Caches I (14) Garcia, Spring 2013 © UCB

Cache Design (for ANY cache)
§  How do we organize cache?
§  Where does each memory address map to?

ú  (Remember that cache is subset of memory, so
multiple memory addresses map to the same
cache location.)

§  How do we know which elements are in
cache?

§  How do we quickly locate them?

CS61C L12 Caches I (15) Garcia, Spring 2013 © UCB

How is the Hierarchy Managed?
§  registers ↔ memory

ú  By compiler (or assembly level programmer)

§  cache ↔ main memory
ú  By the cache controller hardware

§  main memory ↔ disks (secondary storage)
ú  By the operating system (virtual memory)
ú  Virtual to physical address mapping assisted by

the hardware (TLB)
ú  By the programmer (files)

CS61C L12 Caches I (17) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (1/4)
§  In a direct-mapped cache, each memory

address is associated with one possible block
within the cache
ú  Therefore, we only need to look in a single

location in the cache for the data if it exists in the
cache

ú  Block is the unit of transfer between cache and
memory

CS61C L12 Caches I (18) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (2/4)

 Cache Location 0 can be
 occupied by data from:
ú  Memory location 0, 4, 8, ...
ú  4 blocks ⇒ any memory location

that is multiple of 4

Memory	

Memory ���
Address	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

A	

B	

C	

D	

E	

F	

4 Byte Direct 	

Mapped Cache	

Cache 	

Index	

0	

1	

2	

3	

What if we wanted a block
to be bigger than one byte?

Block size = 1 byte	

CS61C L12 Caches I (19) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (3/4)

§  When we ask for a byte, the system
finds out the right block, and loads it
all!
ú  How does it know right block?
ú  How do we select the byte?

§  E.g., Mem address 11101?
§  How does it know WHICH colored

block it originated from?
ú  What do you do at baggage claim?

Memory	

Memory ���
Address	

0	

2	

4	

6	

8	

A	

C	

E	

10	

12	

14	

16	

18	

1A	

1C	

1E	

8 Byte Direct 	

Mapped Cache	

Cache 	

Index	

0	

1	

2	

3	

0	

1	

2	

3	

etc	

Block size = 2 bytes	

4	

5	

6	

7	

8	

9	

CS61C L12 Caches I (20) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (4/4)

§  What should go in the tag?
ú  Do we need the entire address?

   What do all these tags have in common?
ú  What did we do with the immediate

when we were branch addressing,
always count by bytes?

§  Why not count by cache #?
ú  It’s useful to draw memory with the

same width as the block size

Memory	

(addresses shown)	

Memory Address	

0	

2	

4	

6	

8	

A	

C	

E	

10	

12	

14	

16	

18	

1A	

1C	

1E	

8 Byte Direct 	

Mapped Cache w/Tag!	

Cache 	

Index	

0	

1	

2	

3	

0	

1	

2	

3	

etc	

 Tag Data	

(Block size = 2 bytes)	

4	

5	

6	

7	

8	

9	

8	

2	

1E	

14	

0	

1	

2	

3	

Cache#	

1	

0	

3	

2	

CS61C L12 Caches I (21) Garcia, Spring 2013 © UCB

§  Since multiple memory addresses map to
same cache index, how do we tell which one
is in there?

§  What if we have a block size > 1 byte?
§  Answer: divide memory address into three

fields

ttttttttttttttttt iiiiiiiiii oooo!

 tag index byte
to check to offset
if have select within
correct block block block

Issues with Direct-Mapped

CS61C L12 Caches I (22) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Terminology
§  All fields are read as unsigned integers.
§  Index

ú  specifies the cache index (which “row”/block of
the cache we should look in)

§  Offset
ú  once we’ve found correct block, specifies which

byte within the block we want

§  Tag
ú  the remaining bits after offset and index are

determined; these are used to distinguish between
all the memory addresses that map to the same
location

CS61C L12 Caches I (23) Garcia, Spring 2013 © UCB

AREA (cache size, B)
= HEIGHT (# of blocks)
 * WIDTH (size of one block, B/block)

WIDTH
(size of one block, B/block)

HEIGHT
(# of blocks)

AREA
(cache size, B)

2(H+W) = 2H * 2W

Tag Index Offset

TIO Dan’s great cache mnemonic

CS61C L12 Caches I (24) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (1/3)
§  Suppose we have a 8B of data in a direct-

mapped cache with 2 byte blocks
ú  Sound familiar?

§  Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture

§  Offset
ú  need to specify correct byte within a block
ú  block contains 2 bytes

 = 21 bytes

ú  need 1 bit to specify correct byte

CS61C L12 Caches I (25) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (2/3)
§  Index: (~index into an “array of blocks”)

ú  need to specify correct block in cache
ú  cache contains 8 B = 23 bytes
ú  block contains 2 B = 21 bytes
ú  # blocks/cache

 = bytes/cache
 bytes/block

 = 23 bytes/cache
 21 bytes/block

 = 22 blocks/cache

ú  need 2 bits to specify this many blocks

CS61C L12 Caches I (26) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (3/3)
§  Tag: use remaining bits as tag

ú  tag length = addr length – offset - index
 = 32 - 1 - 2 bits
 = 29 bits

ú  so tag is leftmost 29 bits of memory address

§  Why not full 32 bit address as tag?
ú  All bytes within block need same address (4b)
ú  Index must be same for every address within a

block, so it’s redundant in tag check, thus can
leave off to save memory (here 10 bits)

