UCB CS61C : Machine Structures

Lecture 12 - Caches |
2013-02-20

BITCASA OFFERS INFINITE STORAGE!

Dropbox one better. 10GB free storage, and
(pause for effect) they are offering INFINITE)
storage for only $10/month ($99/yr, $69/yr if bifcasa

A Mountain View startup promises to do Eg

INFINITE STORAGE

you sign up before March). Data available
anytime, everywhere. Game changer?

bitcasa.com

Review

= Register Conventions: Each reglster has a
p ép se and limits to its usa Learn |f
co

ollow them, even rf you re writing a
e yourself.

l.oglcal and Shift Instructions

= Operate on bits individually, unlike arithmetic, which
operate on entire word.

Use to isolate fields, either by masking or by shifting
back and forth.

Use shift Ieﬁ logical, , for multiplication by
powers of 2

Use shift right logica , for division by powers of
2 of unsugnge? g‘ﬁrs (unsigned J.nt‘ P

Use shift ri rgh\‘ arithmetic, , for division by
powers of 2 of signed numbers (int)

o New Instructions:

CS61C L12 Caches | (2] Garcia, Spring 2013 © UCB

6 Great Ideas in ComEuter Architecture

1. Layers of Representation/Interpretation

2.

3.

4. Parallelism

5. Performance Measurement & Improvement

6. Dependability via Redundancy

| //' r &
-, €S6IC 12 Caches | (3) Garcia, Spring 2013 © UCB

TheBigPictre

Computer - — Keyboard,

Devices Mouse

Processorl NMemory

(active) NI (passive) - =

(wWhere '
Control programs, Disk, ,,

(‘orain”) data live Network

Datapat when
(“orawn”) running)

Display,
Printer

L———_

oy
CS6IC L12 Caches | (4) Garcia, Spring 2013 © UCB

l.e., storage in

Memog Hiera I’Chx computer systems

= Processor

= holds data in register file (~100 Bytes)
= Registers accessed on nanosecond timescale

= Memory (we’ll call “main memory”)
= More capacity than registers (~Gbytes)

o Access time ~50-100 ns

» Disk
= HUGE capacity (virtually limitiess)
= VERY slow: runs ~milliseconds

oy
) . CS61C L12 Caches | (5) Garcia, Spring 2013 © UCB

Motivation : Processor-Memory Gap

1989 first Intel CPU with cache on chip uProc
1998 Pentium Il has two cache levels on chip v/ 55%l/year

(2X/1.5yr)

Processor-Memory
Performance Gap
(grows 50%/year)

ISV
1 \ 7%lyear

(2X/10yrs)

@
o
c
®
=
S
o
't
@
o

Q A o> O
X & & D
NN\ M\ M\

CS61C L12 Caches | (6) Garcia, Spring 2013 © UCB

Memory Caching

= Mismatch between processor and memory
speeds leads us to add a new level: a
memory cache

= Implemented with same IC processing
technology as the CPU (usually integrated on

same chip): faster but more expensive than
DRAM memory.

= Cache is a copy of a subset of main memory.

= Most processors have separate caches for
instructions and data.

»— - < 5 £S61C 112 Caches | (7) Garcia, Spring 2013 © UCB

Characteristics of the Memory Hierarch

Increasing
distance
from the
processor
In access
time

Processor
I 4-8 bytes (word)

L1$
v8-32

L2$

?
v 1 to 4 block

Main I¥Iemory

tes (block)

/

1,024+ bytes
(disk sector = pa

Secondary Memory

N

B

P
<«

»

(Relative) size of the memory at each level

CS61C L12 Caches | (8)

Inclusive—
what is in L1$
IS a subset of
what is in L2$
IS a subset of
what is in MM
that is a
subset of is in
SM

Garcia, Spring 2013 © UCB

Typical Memory Hierarchy

present processor with as much memory
as is available in the cheapest technology at the
speed offered by the fasfesftechnology y

"

On-Chip Components
Control

Secondary
Main Memory

Memory (Disk

(DRAM) Or Flash)

Second
Level
Cache
(SRAM)

J1su|

Datapath

eleq

aye) ayoed

Speed (#cycles): 12’s ’ ’ ’ 10,000’s
Size (bytes): 100’s ’ ’ ’ T’s
Cost: highest lowest

CS61C L12 Caches | (9) Garcia, Spring 2013 © UCB

Memory Hierarchx

= |f level closer to Processor, it is:
= Smaller

o Faster

= More expensive
= subset of lower levels (contains most recently used

data)

= Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)

= Memory Hierarchy presents the processor
with the illusion of a very large & fast memory

/0L
) . CS61C L12 Caches | (10) Garcia, Spring 2013 © UCB

Memory Hierarchy Analogy: Library

= You're writing a term paper (Processor) at a table in
Library is equivalent to
= essentially limitless capacity, very slow to retrieve a book
Table is main memory

= smaller capacity: means you must return book when table fills up
= easier and faster to find a book there once you‘ve already retrieved it

Open books on table are

= smaller capacity: can have very few open books fit on table; again, when
table fills up, you must close a book

= much, much faster to retrieve data

lllusion created: whole library open on the tabletop

= Keep as many recently used books open on table as possible since likely
to use again

o Also keep as many books on table as possible, since faster than going to
library

CS61C L12 Caches | (T1) Garcia, Spring 2013 © UCB

Memory I-Iierarchx Basis

= Cache contains copies of data in memory that
are being used.

= Memory contains copies of data on disk that
are being used.

= Caches work on the principles of temporal

and spatial locality.

= Temporal Locality: if we use it now, chances are
we’ll want to use it again soon.

= Spatial Locality: if we use a piece of memory,
chances are we’ll use the neighboring pieces
soon.

oy
) . CS61C L12 Caches | (12) Garcia, Spring 2013 © UCB

Two Types of Locality

= Jemporal Locality (locality in time)

= If a memory location is referenced then it will tend
to be referenced again soon

= Keep most recently accessed data items closer to
the processor

= Spatial Locality (locality in space)

= If a memory location is referenced, the locations
with nearby addresses will tend to be referenced
soon

=> Move blocks consisting of contiguous words
closer to the processor

oy
) . CS61C L12 Caches | (13) Garcia, Spring 2013 © UCB

Cache Design (for ANY cache)

= How do we organize cache?

= Where does each memory address map to0?

= (Remember that cache is subset of memory, so
multiple memory addresses map to the same
cache location.)

= How do we know which elements are in
cache?

= How do we quickly locate them?

p— - - CS61C L12 Caches | (14) Garcia, Spring 2013 © UCB

How is the Hierarchx Managed?

= registers <= memory

= By compiler (or assembly level programmer)
= cache <= main memory

= By the cache controller hardware

= main memory <> disks (secondary storage)

= By the operating system (virtual memory)

= Virtual to physical address mapping assisted by
the hardware (TLB)

= By the programmer (files)

oy
) . CS61C L12 Caches | (15) Garcia, Spring 2013 © UCB

Administrivia
= How many hours h on Project 1 part a?
- A)O<h<5
- B)5<{h<10
o C)10<h<15
- D)15<h <20

o E)20<h
= Project part b due sunday!
= s 75% of your grade.

= Midterm in 12 days

/0L
) . CS61C L12 Caches | (16) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (1/4)

= In a direct-mapped cache, each memory
address is associated with one possible block
within the cache

= Therefore, we only need to look in a single
location in the cache for the data if it exists in the

cache

= Block is the unit of transfer between cache and
memory

e CS61C L12 Caches | (17) Garcia, Spring 2013 © UCB

Direct-Mapped Cache (2/4)

Memory
Address Memory Ind%x Mapped Cache
|
2
R
Block size = 1 byte

Cache Location 0 can be
occupied by data from:
= Memory location O, 4, 8, ...

= 4 blocks = any memory location
that is multiple of 4
What if we wanted a block

) e DIUUE ||.|.l‘.‘l‘

— O

p
R,
4
)
6
7
S
9
A
B
C
D

\‘
\"-.

Direct-Mapped Cache (3/4)

Memory
Address Memory Index Mapped Cache

0
|
2
3
Block size = 2 bytes

hen we ask for
¥." ds out the right %B)ck, and%iﬁs it
How does it know right block?
l-low do we select the byte?

Mem address 11101?

ow does it know WHICH colored
lock it originated m:

= What do you do at boggage claim?

)
p
4
6
S
A
C
E

Direct-Mapped Cache (4/4)

ed Cache w/Tag!

(Block size = 2 bytes)
= /What should go in the tag?

= Do we need the entire address?
- What do all these tags have in common?

o What did we do with the immediate
when we were branch addressing,
always count by bytes?

= Why not count by cache #?

o |t’s useful to draw memory with the
same width as the block size

)
2
4
6
3
A
C
E
10

~ > GO\ L b\

by Y ‘
el
Sy

b

Issues with Direct-MaEEed

= Since multiple memory addresses map to
same cache index, how do we tell which one
is in there?

= What if we have a block size > 1 byte?

= Answer: divide memory address info three
fields

@ A9
»— -~ “) CS4IC L12 Caches | (v])] Garcia, Spring 2013 © UCB

Direct-MaEEed Cache Terminologx

= All fields are read as unsigned integers.

» Index

= specifies the cache index (which “row”/block of
the cache we should look in)

= once we’ve found correct block, specifies which
byte within the block we want

= the remaining bits after offset and index are
determined; these are used to distinguish between
all the memory addresses that map to the same
location

e CS61C L12 Caches | (22) Garcia, Spring 2013 © UCB

IO Dan’s great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks)
¥*

2(I-I+W) - 2H %

Index

HEIGHT AREA
l# of blocks) (cache size, B)

| //' r &
- €S6IC 12 Caches | (23) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (1/3)

= Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks

= Sound familiar?

= Determine the size of the tag, index and
offset fields if we’re using a 32-bit

architecture

= Offset
= need to specify correct byte within a block
= block contains 2 bytes
= 2! bytes
o need to specify correct byte

VL
»— -~ “) CS4IC L12 Caches | (24) Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (2/3)

= Index: (~index into an “array of blocks”)
= need to specify correct block in cache
= cache contains 8 B = 23 bytes
= block contains 2 B = 2! bytes
= # blocks/cache

= bytes/cache
bytes/block

23 bytes/cache
2! bytes/block

22 blocks/cache

to specify this many blocks

Garcia, Spring 2013 © UCB

Direct-Mapped Cache Example (3/3)

= Tag: use remaining bits as tag
= tag length = addr length - offset - index
=32 -1- 2 bits
= 29 bits
= so tag is leftmost of memory address

= Why not full 32 bit address as tag?
= All bytes within block need same address (4b)

= Index must be same for every address within a
block, so it’s redundant in tag check, thus can
leave off to save memory (here 10 bits)

/0L
) . CS61C L12 Caches | (26) Garcia, Spring 2013 © UCB

Peer Instruction

For a given cache size: a larger block size can ABC
cause a lower hit rate than a smaller one. : FFF

If you know your computer’s cache size, you : FFT
can often : FTF

Memory hierarchies take advantage of : FIT
bn.‘keepmg the most recent data items |3: TFF

fo the processor. : TFT

4: TTF

5: TTT

oy
- CS6IC L12 Caches | (27) Garcia, Spring 2013 © UCB

Peer Instruction Answer

“Most Recent” items = Temporal locality

For a given cache size: a larger block size can
cause a lower hit rate than a smaller one.

If you know your computer’s cache size, you
can often

C. Memory hierarchies take advantage .of

bn.‘keeping the most recent data items
fo the processor.

= CS61C L12 Caches | (28) Garcia, Spring 2013 © UCB

And in Conclusion...

= We would like to have the capacity of disk at
the speed of the processor: unfortunately this
is not feasible.

= S0 we create a memory hierarchy:
= each successively lower level contains “most used”

data from next higher level
= exploits temporal & spatial locality

= do the common case fast, worry less about the
exceptions
(design principle of MIPS)

= Locality of reference is a Big Idea

/0L
) » CS61C L12 Caches | (29) Garcia, Spring 2013 © UCB

