inst.eecs.berkeley.edu/~cs6lc

GOOGLE GLASS APPLICATION : BE CREATIVE!

Google Glass may be one vision of the future of
post-PC interfaces - augmented reality with
video and voice input. They’re looking for early
adopters to buy their $1,500 development
versions, chosen by the creative vision people
submit (via text, animation, or video).

www.google.com/glass

) UCB CS61C : Machine Structures
Lecture 14 - Caches Il
‘ 2013-02-25
Lecturer SOE
Dan Garcla

Block Size Tradeoff

= Benefits of Larger Block Size
o Spatial Locality: if we access a given word, we're likely to
access other nearby words soon
= Very applicable with Stored-Program Concept: if we

execute a given instruction, it's likely that we'll execute
the next few as well

= Works nicely in sequential array accesses too
= Drawbacks of Larger Block Size
o Larger block size means larger miss penalty
= on a miss, takes longer time to load a new block from next level

o If block size is too big relative to cache size, then there
are too few blocks

z ; = Result: miss rate goes up

Review

Mechanism for transparent movement of data

among levels of a storage hierarchy

o set of address/value bindings

= address = index to set of candidates

o comparetdeswed address with tag
ﬁcr)v&tcjene:n/%rl&llisasnd binding on miss

address: fog index offset
000000000000000000 0000000001 1100

Vali)/u/
Tag / Oxc-f 0x8— x4-7 0x0-3
—

il 0 d C b a

Extreme Example: One Big Block

Valid Bit Tag Cache Data
I

= Cache Size =4 bytes Block Size = 4 bytes
= Only ONE entry (row) in the cache!

= If item accessed, likely accessed again soon
= But unlikely will be accessed again immediately!

= The next access will likely to be a miss again

= Continually loading data into the cache but
discard data (force out) before use it again

= Nightmare for cache designer: Ping Pong Effect

Types of Cache Misses (1/2)
= “Three Cs” Model of Misses
= 1t C: Compulsory Misses

o occur when a program is first started

s cache does not contain any of that program’s data
yet, so misses are bound fo occur

= can't be avoided easily, so won't focus on these in
this course

#74

I@ cache Index?

Types of Cache Misses (2/2)

= 20 C: Conflict Misses
= miss that occurs because two distinct memory
addresses map fo the same cache location

= two blocks (which happen to map fo the same
location) can keep overwriting each other

= big problem in direct-mapped caches
s how do we lessen the effect of these?
= Dealing with Conflict Misses
= Solution 1: Make the cache size bigger
- Fails at some point
= Solution 2: Multiple distinct blocks can fit in the same

What to do on a write hit?

= Write-through
= update the word in cache block and corresponding
word in memory
= Write-back
= update word in cache block
= allow memory word to be “stale”

o = add ‘dirty’ bit to each block indicating that
memory needs to be updated when block is
replaced

s = OS flushes cache before I/0...
= Performance trade-offs?

Block Size Tradeoff Conclusions
Miss Miss £xploits Spatial Localit
Penalty Rate " E i
Fewer blocks:
compromises
temporal locality
Block Size Block Size
Average Increased Miss Penalty
Access & Miss Rate
Time
g { Block Size
Fully Associative Cache (1/3)

= Memory address fields:
= Tag: same as before
= Offset: same as before
= Index: non-existant
= What does this mean?
= no “rows”: any block can go anywhere in the cache

s must compare with all tags in entire cache fo see if
data is there

74

Fully Associative Cache (2/3)

= Fully Associative Cache (e.g., 32 B block)
= compare tags in parallel

31 7 o
[Cache Tag (27 bits long) __ [Byte Offsef]
Cache Tag Valid Cache Data
——© =
<6 1
=y A=
b
—O—

#74

N-Way Set Associative Cache (1/3)

= Memory address fields:
= Tag: same as before
= Offset: same as before

o Index: points us to the correct “row” (called a set in
this case)

= So what's the difference?
= each set contains multiple blocks

o once we've found correct set, must compare with all
tags in that set to find our data

#4

Fully Associative Cache (3/3)

= Benefit of Fully Assoc Cache
= No Conflict Misses (since data can go anywhere)
= Drawbacks of Fully Assoc Cache

= Need hardware comparator for every single entry: if
we have a 64KB of data in cache with 4B entries, we
need 16K comparators: infeasible

#74

N-Way Set Associative Cache (3/3)

Associative Cache Example
Memory €ache
Address Memory Index
0 —— 0
1 / 0
2 1
3 1
4
5
6
7
3 = Here’s a simple 2-way
é set associative cache.
C
D|
E
@ = o

= What's so great about this?

= even a 2-way set assoc cache avoids a lot of conflict
misses

= hardware cost isn't that bad: only need N
comparators

= In fact, for a cache with M blocks,
o it's Direct-Mapped if it's 1-way set assoc
= it's Fully Assoc if it's M-way set assoc

= so these two are just special cases of the more
general set associative design

G

4-Way Set Associative Cache Circuit

Final Type of Cache Miss

= 31 C: Capacity Misses

= miss that occurs because the cache has a limited
size

= miss that would not occur if we increase the size of
the cache

o sketchy definition, so just get the general idea

This is the primary type of miss for Fully

Associative caches.

@

N-Way Set Associative Cache (2/3)

= Basic Idea

= cache is direct-mapped w/respect to sets

= each set is fully associative with N blocks in it
= Given memory address:

= Find correct set using Index value.

o Compare Tag with all Tag values in the determined
set.

= If a match occurs, hit!, otherwise a miss.

= Finally, use the offset field as usual to find the desired
data within the block.

#74 -

Block Replacement Policy

= Direct-Mapped Cache

= index completely specifies position which position a block can go in
on a miss

= N-Way Set Assoc
= index specifies a set, but block can occupy any position within the
sef on a miss
= Fully Associative
o block can be written into any position
= Question: if we have the choice, where should we write
an incoming block?
= If there are any locations with valid bit off (empty), then usually write
the new block into the first one.
o If all possible locations already have a valid block, we must pick a
replacement policy: rule by which we determine which block gets

g f “cached out” on a miss.

Block Replacement Policy: LRU

= LRU (Least Recently Used)

= Idea: cache out block which has been accessed
(read or write) least recently

= Pro: femporal locality = recent past use implies
likely future use: in fact, this is a very effective policy

= Con: with 2-way set assoc, easy to keep track (one
LRU bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

#74

Block Replacement Example

= We have a 2-way set associative cache with
a four word total capacity and one word
blocks. We perform the following word
accesses (ignore bytes for this problem):
0,2,0,1,4,0,23,5,4

= How many hits and how many misses will
there be for the LRU block replacement
policy?

#74

Block Replacement Example: LRU ~ loc0 loct

setof gfru
0: miss, bring into set 0 (loc 0) set1

seto"“o 2
2: miss, bring into set 0 (loc 1) ,,
[firu
o:m seto—0 ™2
set 1
1: miss, bring into set 1 (loc 0) **%_0["2
: miss, bring into set 1 (loc 0) __ i
. mi . B set of g
4: miss, bring into set 0 (loc 1, replace 2) se“_1w
set 0f !

gddresses 0,2,0,1,4,0,.. O0:hit . —

Big Idea

= How to choose between associativity, block
size, replacement & write policy?
= Design against a performance model
= Minimize: Average Memory Access Time
= Hit Time
+ Miss Penalty x Miss Rate
= influenced by technology & program behavior
= Create the illusion of a memory that is large,
cheap, and fast - on average
= How can we improve miss penalty?

#4

Improving Miss Penalty

= When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

= Today 2400 MHz Processor (0.4 ns per clock
cycle) and 80 ns to go fo DRAM
= 200 processor clock cycles!

MEM

Solution: another cache between memory and the

And in Conclusion...

= We've discussed memory caching in detail. Caching in general

shows up over and over in computer systems

= Filesystem cache, Web page cache, Game databases / fablebases,
Software memoization, Others?

Big idea: if something is expensive but we want to do it repeatedly,

do it once and cache the result.

Cache design choices:

= Size of cache: speed v. capacity

= Block size (i.e., cache aspect ratio)

= Write Policy (Write through v. write back

= Associafivily choice of N (direct-mapped v. set v. fully associafive]

= Block replacement policy

= 2nd level cache?

= 3rd level cache?
Use performance model to pick between choices, depending on

z programs, technology, budget, ...

Qﬂoossor cache: Second Level (L2) Cache

Peer Instruction
12
1. A 2-way set-associative cache can be a) FF
outperformed by a direct-mapped cache. b) FT
2. Larger block size = lower miss rate g: ::

Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

= The slides will appear in the order they would
have in the normal presentation

. Bonus

#74 -

Analyzing Mutti-level cache hierarchy
o

L1 hit *| L2 hit
time | tme | L2 Miss Rate

L2 Miss Penally
L1 Miss Rate

Avg Mem Access TimIIe1 =Mlss L

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
I@ (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

Example

= Assume
= Hit Time =1 cycle
s Miss rate = 5%
= Miss penalty = 20 cycles
= Calculate AMAT...

= Avg mem access time
=1+0.05x20
=1+1cycles
=2 cycles

74

Example: with L2 cache

= Assume
= L1 Hit Time =1 cycle
o L1 Miss rate = 5%
o L2 Hit Time = 5 cycles
= L2 Miss rate =15% (% L1 misses that miss)
= L2 Miss Penalty = 200 cycles
= L1 miss penalty = 5 + 0.15 * 200 = 35
= Avg mem access time = 1+ 0.05 x 35
=2.75 cycles

#14

Ways to reduce miss rate

= Larger cache
= limited by cost and technology
= hit time of first level cache < cycle time (bigger
caches are slower)
= More places in the cache to put each block of
memory - associativity
o fully-associative
= any block any line
= N-way set associated
+ N places for each block
+ direct map: N=1

74

Example: without L2 cache

= Assume
= L1 Hit Time =1 cycle
s L1 Miss rate = 5%
s L1 Miss Penalty = 200 cycles
= Avg mem access time =1+ 0.05 x 200
=1 cycles

= 4x faster with L2 cache! (2.75 vs. 1)

An Actual CPU - Pentium M

#74 -

Typical Scale

=1
= size: tens of KB
= hit time: complete in one clock cycle
s miss rates: 1-5%
" L2:
s size: hundreds of KB
= hit time: few clock cycles
s miss rates: 10-20%
= L2 miss rate is fraction of L1 misses that also
miss in L2

g e why so high?

An actual CPU - Early PowerPC

= Cache
= 32 KB Instructions and 32 KB
Data L1 caches
o External L2 Cache interface
with integrated controller
and cache tags, supports up
to 1 MByte external L2 cache
o Dual Memory Management
Units (MMU) with Translation
Lookaside Buffers (TLB)
= Pipelining
= Superscalar (3 inst/cycle)
= 6 execution units (2 infeger

and 1 double precision IEEE
floating point)

