

What about other numbers?

1. Very large numbers? (seconds/millennium)
$926,000_{10}\left(3.1556926_{10} \times 10^{10}\right)$
2. Very small numbers? (Bohr radius)
$\Rightarrow 0.00000000529177_{10} \mathrm{~m}\left(5.29177_{10} \times 10^{-11}\right)$

Numbers with both integer \& fractional parts?
$\xrightarrow{\mathrm{Numbe}}$
First consider \#3.
...our solution will also help with 1 and 2.

6e

Quote of the day
" 95% of the
folks out there are completely clueless about floating-point."

James Gosling

Sun Fellow
Java Invento
Cal

Review of Numbers

- Computers are made to deal with numbers
-What can we represent in N bits?
- 2^{N} things, and no more! They could be..
- Unsigned integers:

0 to $2^{\mathrm{N}}-1$
(for $\mathrm{N}=32,2^{\mathrm{N}}-1=4,294,967,295$)

- Signed Integers (Two's Complement)

$$
-2^{(N-1)} \text { to } 2^{(N-1)}-1
$$

Cal

$$
\text { (for } \left.\mathrm{N}=32,2^{(N-1)}=2,147,483,648\right)
$$

Representation of Fractions with Fixed Pt. What about addition and multiplication?

Addition is $\quad \begin{array}{cc}01.100 & 1.5, \\ +00.100 & 0.51\end{array}$
straightforward: $\begin{array}{lll}+00.100 \\ 10.000 & \begin{array}{l}0.510 \\ 2.0\end{array}\end{array}$
$\begin{array}{ll}01.100 & 1.5_{10} \\ 0.100\end{array}$ $\frac{00.100}{00000} \quad 0.5_{10}$

01100
00000
$\frac{00000}{0000110000}$

Cal

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit
representation: $\quad 2^{1}{ }_{20}^{20}$
$10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=2.625_{10}$
If we assume "fixed binary point", range of 6-bit epresentations with this forma:

$$
0 \text { to } 3.9375 \text { (almost 4) }
$$

Cal

```
Representation of Fractions
So far, in our examples we used a "fixed" binary point
what we really want is to "float" the binary point. Why?
Floating binary point most effective use of our limited bits (and
    thus more accuracy in our number representation):
    example: put 0.1640625 into binary. Represent as in
    example: put 0.1640625 into binary. Reppes,
        .. 000000.001010100000.
            Store these bits and keep track of the binary
        Any other solution would lose accuracy!
With floating point rep., each numeral carries a exponent
W Wield recording the whereabouts of its binary point.
The binary point can be outside the stored bits, so very
```

Large and small numbers can be represented.

Scientific Notation (in Decimal)
mantissa $\underbrace{6.02_{10} \times 10^{23}}_{\text {decimal point }}$ radix (base)

- Normalized form: no leadings 0 s
(exactly one digit to left of decimal point)
- Alternatives to representing $1 / 1,000,000,000$
- Normalized: $\quad 1.0 \times 10^{-9}$
- Not normalized: $\quad 0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Cal

- Computer arithmetic that supports called floating point, because it point is not fixed, as it is for integers

Declare such variable in \mathbf{C} as float
Ce \qquad amata balamenoves

Floating Point Representation (1/2)

- Normal format: +1.xxx... $\mathrm{x}_{\mathrm{two}}{ }^{*} \mathbf{2 y y y}^{\mathrm{yy}} \ldots \mathrm{y}_{\mathrm{two}}$
- Multiple of Word Size (32 bits)

1 bit 8 bits 23 bits

- S represents Sign

Exponent represents y's
Significand represents x 's

- Represent numbers as small as

Cab. \qquad
\qquad

Floating Point Representation (2/2)

- What if result too large?
$\left(>2.0 \times 10^{38},<-2.0 \times 10^{38}\right.$)
Overflow! \Rightarrow Exponent larger than represented in 8 -
bit Exponent field
-What if result too small?
($>0 \&<2.0 \times 10^{-38},<0 \&>-2.0 \times 10^{-38}$)
$-\frac{\text { Underflow! }}{\text { represented in }} \rightarrow \underset{\text { in }}{ }$ Negatitive exponent larger than

- What would help reduce chances of overflow and/or underflow?
Cal

IEEE 754 Floating Point Standard (3/3)

 - Called Biased Notation, where bias is number subtracted to get real number- IEEE 754 uses bias of 127 for single prec.

Subtract 127 from Exponent field to get
actual value for exponent
023 is bias for double precision - Summary (single precision):

1 bit 8 bits 23 bits

- Double precision identical, except with
- Double precision identical, except with
exponent bias of 1023 (half, quad similar)
- l.e., counting from binary odometer $00 \ldots 00$ up to
$11 \ldots 11$ goes from 0 to + MAX to -0 to - MAX to 0

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
OK to do further computations with ∞ E.g., $\mathrm{X} / 0>\mathrm{Y}$ may be a valid comparison - Ask math majors

-IEEE 754 represents $\pm \infty$

Most positive exponent reserved for ∞
Significands all zeroes
www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Special Numbers - What have we defined so far? (Single
Expocision)
0

- Professor Kahan had clever ideas; Waste not, want not
Cal - Wanted to use Exp=0,255 \& Sig! $=0$

Representation for Not a Number

- What do I get if I calculate sqrt(-4.0) or 0/0?
If ∞ not an error, these shouldn't be eithe
- Called Not a Number (NaN)
- Exponent $=\mathbf{2 5 5}$, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: op(NaN, X) $=\mathrm{NaN}$
-Can use the significand to identify which!
ce \qquad
\qquad

Special Numbers Summary

-Reserve exponents, significands:		
Exponent	Significand	Object
0	nonzero	Denorm
1-254	anything	+/- fl. pt.
255	0	$\stackrel{+/-\infty}{\text { Na }}$
255	nonzero	$\overline{\mathrm{NaN}}$

Smallest representable pos num $a=2$
smailest representable pos num $\mathrm{b}=\mathrm{P}^{-148}$
$-\infty \rightarrow+\infty$
Cab
Representation for Denorms (2/2)

- Solution:

We still haven't used Exponent $=0$ Significand nonzero
Enormalized number: no (implied)
eading 1, implicit exponent $=-126$

Bonus slides

- These are extra slides that used to be included in lecture notes, but have this, the "bonus" area to serve as a supplement.

The slides will appear in the order the would have in the normal presentation

Example: Converting Binary FP to Decimal | 0 | 01101000 | 10101010100001101000010 |
| :--- | :--- | :--- |

- Sign: $0 \rightarrow p \phi s i t \mid v e$
- Exponent:
.01101000
$01101000_{t w}=104_{\text {te }}$
- Bias adjustme
$1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times x^{-4}+1 \times 2^{-5}+\cdots$
$=1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$
$=1.0+0.666115$
- Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$

Cal (about 2/10,000,000)

Representation for Denorms (1/2)
Problem: There's a gap among
epresentable FP numbers around 0
Smallest representable pos num:
$a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}$
Second smallest representable pos num:
$\begin{aligned} \mathrm{b} & =1.000 \ldots . .1_{2}{ }^{*}{ }^{2}{ }^{2 \cdot 126} \\ & =\left(1+0.00 \ldots 1_{2}\right) \\ & \left(1+2^{-126}\right.\end{aligned}$

a-0 $=2^{-126}$ and implicit 1
$\mathbf{b}-\mathbf{a}=\mathbf{2}^{-149}$ Gaps!
$-\infty \quad \bigcirc_{0}^{\prime} \bigcirc_{a}^{\prime \prime}$
Cal

$\begin{array}{lll}- & \text { Floating Point lets us: } \\ & \text { Represent numbers containing both integer and fractional } \\ \text { (2) }\end{array}$	
- IEEE 754 Floating Point Standard is most widely \pm a	
accepted attempt to standardize interpretation of such numbers (Every desktop or server computer sold	
- Summary (single precision):	
S Exponent \| Sign	
1 bit 8 bits 23 bits	
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$	
Cal $\begin{aligned} & \cdot \text { Double precision identical, except with } \\ & \text { exponent bias of } 1023 \text { (half, quad similar) }\end{aligned}$	

Example: Converting Decimal to FP

-2.340625×10^{1}

1. Denormalize: -23.40625
2. Convert integer part:
$23=16+(7=4+(3=2+(1)))=10111_{2}$
3. Convert fractional part:
$.40625=.25+(.15625=.125+(.03125))=.01101_{2}$
4. Put parts together and normalize:
$10111.01101=1.011101101 \times 2^{4}$
5. Convert exponent: $127+4=10000011_{2}$

1	10000011	01110110100000000000000

Administrivia...Midterm in < 1 week

- How should we study for the midterm?

Form study groups...don't prepare in isolation Attend the review session
Look over HW, Labs, Projects, class notes!
Go over old exams - HKN office has put them online
(link from 61 C home page)
Attend TA office hours and work out hard probs

Cal \qquad

Understanding the Significand (1/2)

- Method 1 (Fractions)
- In decimal: $0.340_{10} \quad \Rightarrow \quad 340_{10} / 1000_{10}$
\cdot In binary: $\begin{aligned} 0.110_{2} & \Rightarrow 110_{2} / 1000_{2}=6_{10} / 8_{10} \\ & \Rightarrow 11_{2} 100_{2}=3_{10} / 4_{10}\end{aligned}$
Advantage: less purely numerical, mor
thought oriented; this method usually
helps peopple understand the meaning of
the significand better

Cas

Rounding

- When we perform math on real numbers, we have to worry abou significant field.
- The FP hardware carries two extra bit precision, and then round to get the proper value
- Rounding also occurs when converting: double to a single precision value, or floating point number to an integer

Cas

Double Precision FI. Pt. Representation

- Next Multiple of Word Size (64 bits)

32 bits

- Double Precision (vs. Single Precision) C variable declared as double - Represent numbers almost as small as
2.0×10^{-308} to almost as large as 2.0×10^{30} But primary advantage is greater accuracy due to larger significand
ces \qquad

Understanding the Significand (2/2)

- Method 2 (Place Values):
-Convert from scientific notation
In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$
In decimal: $1.6732=\left(1 \times 10^{0}\right)$
$\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
In binary: $1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$
$\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
Interpretation of value in each position extends beyond the decimal/binary poin
Advantage: good for quickly calculating significand value; use this method for translating FP numbers
Cal

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)

Unbelievable range of numbers
n (accuracy)
-IEEE 754-2008 "binary128" standard Has 15 exponent bits and 112 significand
bits (113 precision bits)

-Oct-Precision?

- Some have tried, no real traction so far

Half-Precision?
-Yep, "binary16": 1/5/10
n.wikipedia.org/wiki/Floating_point

Cal

```
Precision and Accuracy
```

 Don't confuse these two terms
    ```
    Don't confuse these two terms
Precision is a count of the number bits in a
Precision is a count of the number bits in a
Accuracy is a measure of the difference
Accuracy is a measure of the difference
    between the actual value or dumber and
    between the actual value or dumber and
    its computer representation.
    its computer representation.
    High precision permits high accuracy but doesn't
    High precision permits high accuracy but doesn't
    guarantee it. It is possible to have high precision
    guarantee it. It is possible to have high precision
    but low accurac
    but low accurac
    Example: float pi = 3.14;
    Example: float pi = 3.14;
        significant (hig
        significant (hig
        approximation (not accurate).
```

 approximation (not accurate).
    ```
Precision and Accuracy
on't confuse these two term
computer word used to represent a value.
racy is a measure of the difference
its computer representation.
High precia permis high accuracy bu dosis but low accuracy. significant (highly precise), but is only an approximation (not accurate)
```

Cal

FP Addition

- More difficult than with integers
- Can't just add significands

How do we do it?

De-normalize to match exponents
Add significands to get resulting one
Keep the same exponent
Normalize (possibly changing exponent)
Note: If signs differ, just perform a subtract instead.
Cal
Cos
Cas

IEEE FP Rounding Modes
Examples in decimal (but, of course, IEEE754 in binary)

- Round towards $+\infty$
- ALWAYS round "up": $2.001 \rightarrow 3,-2.001 \rightarrow-2$
- Round towards - ∞

ALWAYS round "down": $1.999 \rightarrow 1,-1.999 \rightarrow-2$

- Truncate
owards 0
Normal roundill mode). Midway? Round to even Round like you learned in grade school (nearest int) Except if the value is right on the borderline, in which case Ensures fairness on call EVEN numb This way, half the time we round up on tie, the ether halt time

MIPS Floating Point Architecture (1/4)

- MIPS has special instructions for
loating point operations:
- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
- These instructions are far more
complicated than their integer
counterparts. They require special hardware and usually they can take much longer to compute.

Cas

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips
- Processor: handles all the normal stuff
-Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
$\cdot \mathrm{mfc} 0, \mathrm{mtc} 0, \mathrm{mfc} 1, \mathrm{mtc} 1$, etc.
- Appendix pages A-70 to A-74 contain Cal many, many more FP operations.

MIPS Floating Point Architecture (2/4)

- Problems:
- It's inefficient to have different instructions take vastly differin amounts of time.
Generally, a particular piece of data will not change from FP to int, or vice versa within a program. So only one type of instruction will be used on it.
Some programs do no floating point calculations
It takes lots of hardware relative to
integers to do Floating Point fast
Ce \qquad

MIPS Floating Point Architecture (3/4)

1990 Solution: Make a completely

- Coprocessor 1: FP chip
- contains 32 32-bit registers: $\$ \mathbf{f 0}, \$ \mathrm{f} 1, \ldots$
- most registers specified in . s and .d instruction refer to this set
- separate load and store: 1 1wc ("load word coprocessor 1", "store ...")

Double Precision: by convention, even odd pair contain one DP FP number $\$ \mathrm{f} 0 / \$ \mathrm{f} 1, \$ \mathrm{f} 2 / \$ \mathrm{f} 3, \ldots, \$ \mathrm{f} 30 / \mathrm{S} £ 31$
Cal

Casting floats to ints and vice versa

(int) floating_point_expression Coerces and converts it to the neares integer (C uses truncation)
i $=$ (int) (3.14159 * f)
float) integer_expression converts integer to nearest floating poin $\mathbf{f}=\mathbf{f}+(f l o a t) i_{i}$

Cab

int \rightarrow float \rightarrow int

if (i == (int)((float) i)) \{
printf("true");
\}

- Will not always print "true"
- Most large values of integers don't have exact floating point
representations!
representations!
-What about double?


```
float }->\mathrm{ int }->\mathrm{ float
    if (f == (float)((int) f)) {
    printf("true");
}
-Will not always print "true"
Small floating point numbers (<1)
don't have integer representations
- For other numbers, rounding errors
```

```
Floating Point Fallacy
- FP add associative: FALSE!
    -x=-1.5 < 1038,y=1.5 x 10 38, and z=1.0
    * x+(y+z) }=-1.5\times1\mp@subsup{0}{}{38}+(1.5\times1\mp@subsup{0}{}{38}+1.0
    (x+y)+z=(-1.5\times1\mp@subsup{0}{}{38}+1.5\times1\mp@subsup{0}{}{38})+1.0
    Therefore, Floating Point add is not
    associative!
    -Why? FP result approximates real result!
    -This example: 1.5 < 1038 is so much larger
    than 1.0 that 1.5 \times1\mp@subsup{0}{}{38}+1.0 in floating point
representation is still 1.5 }\times1\mp@subsup{0}{}{3
```


Peer Instruction Answer

1. quinv/ingla f @t Nint \rightarrow float
na ires Toat -> int
plodusts amest imber ${ }_{1}$

2. 3.14 -> $3->3$
3. 32 bits for signed int, but 24 for FP mantissa?
4. $\mathrm{x}=$ biggest pos \#
$x=$ biggest pos \#,
$y=-x, z=1(x!=$ inf $)$
Cal
 8: mTr

Peer Instruction Answer

What is the decimal equivalent of:

1) 10000001 111 00000000000000000000
$\frac{11}{S}$ Exponent 111000000000000000
$(-1)^{\mathrm{s}} \mathrm{x}\left(1+\right.$ Significand) $\times \mathbf{2}^{\text {(Exponent-127) }}$
$(-1)^{5} \times\left(1+\right.$ Significand) $\times 2(1)^{1} \times(1+.111) \times 2^{(129-127)}$
()$\left.^{1}\right)$
${ }_{-1}(-1)^{5} \times(1+.111) \times 2(2)$

-111.1

-7.5

Cal
Converting f float \rightarrow int \rightarrow floa
produces same float number
produces same float number
2. Converting int \rightarrow float \rightarrow int produces PP
FP add is associative
$(x+y)+z=x+(y+z)$
Cal

Peer Instruction	
1. Converting float -> int \rightarrow float	1. ${ }_{\text {a }}^{\text {ABC }}$
produces same float number	1: ${ }^{\text {2: FFF }}$
2. Converting int $->$ float \rightarrow int produces same int number	3: FTF
	5: mpr
3. FP add is associative:	6: 7 7 ${ }^{\text {TFT }}$
Cal ${ }_{\text {catcher }}$	8: TTT

