CS 61C: Great Ideas in Computer Architecture

MapReduce

Guest Lecturer: Justin Hsia

Review of Last Lecture

- Performance latency and throughput
- Warehouse Scale Computing
 - Example of parallel processing in the post-PC era
 - Servers on a rack, rack part of cluster
 - Issues to handle include load balancing, failures, power usage (sensitive to cost & energy efficiency)
 - PUE = Total building power / IT equipment power

Great Idea #4: Parallelism

Today's Lecture

Software

- Parallel Requests
 Assigned to computer
 e.g. Search "Garcia"
- Parallel Threads
 Assigned to core
 e.g. Lookup, Ads
- Parallel Instructions
 > 1 instruction @ one time
 e.g. 5 pipelined instructions
- Parallel Data
 > 1 data item @ one time
 e.g. add of 4 pairs of words
- Hardware descriptions
 All gates functioning in parallel at same time

Hardware

Warehouse Scale Computer

Smart Phone

Instruction Unit(s)

Functional Unit(s)

 $A_0 + B_0 A_1 + B_1 A_2 + B_2 A_3 + B_3$

Cache Memory

Logic Gates

Memory

Input/Output

Spring 2013 -- Lecture #18

Leverage

Parallelism &

Achieve High

Performance

Agenda

- Amdahl's Law
- Request Level Parallelism
- Administrivia
- MapReduce
 - Data Level Parallelism

Amdahl's (Heartbreaking) Law

Speedup due to enhancement E:

Speedup w/E =
$$\frac{\text{Exec time w/o E}}{\text{Exec time w/E}}$$

 Example: Suppose that enhancement E accelerates a fraction F (F<1) of the task by a factor S (S>1) and the remainder of the task is unaffected

• Exec time w/E = Exec Time w/o E \times [($\hat{1}$ - \hat{F}) + \hat{F} /S] Speedup w/E = 1 / [(1-F) + F/S]

Amdahl's Law

• Speedup =
$$\frac{1}{(1-F) + \frac{F}{S}}$$
 Sped-up part

 Example: the execution time of half of the program can be accelerated by a factor of 2.
 What is the program speed-up overall?

$$\frac{1}{0.5 + \underline{0.5}} = \frac{1}{0.5 + 0.25} = 1.33$$

Consequence of Amdahl's Law

 The amount of speedup that can be achieved through parallelism is limited by the non-parallel portion of your program!

Agenda

- Amdahl's Law
- Request Level Parallelism
- Administrivia
- MapReduce
 - Data Level Parallelism

Request-Level Parallelism (RLP)

- Hundreds or thousands of requests per second
 - Not your laptop or cell-phone, but popular Internet services like web search, social networking, ...
 - Such requests are largely independent
 - Often involve read-mostly databases
 - Rarely involve strict read—write data sharing or synchronization across requests
- Computation easily partitioned within a request and across different requests

Google Query-Serving Architecture

Anatomy of a Web Search

Google "Dan Garcia"

Anatomy of a Web Search (1 of 3)

- Google "Dan Garcia"
 - Direct request to "closest" Google Warehouse Scale Computer
 - Front-end load balancer directs request to one of many arrays (cluster of servers) within WSC
 - Within array, select one of many Google Web Servers (GWS) to handle the request and compose the response pages
 - GWS communicates with Index Servers to find documents that contain the search words, "Dan", "Garcia", uses location of search as well
 - Return document list with associated relevance score

Anatomy of a Web Search (2 of 3)

- In parallel,
 - Ad system: run ad auction for bidders on search terms
 - Get images of various Dan Garcias
- Use docids (document IDs) to access indexed documents
- Compose the page
 - Result document extracts (with keyword in context)
 ordered by relevance score
 - Sponsored links (along the top) and advertisements (along the sides)

Anatomy of a Web Search (3 of 3)

- Implementation strategy
 - Randomly distribute the entries
 - Make many copies of data (a.k.a. "replicas")
 - Load balance requests across replicas
- Redundant copies of indices and documents
 - Breaks up hot spots, e.g. "Gangnam Style"
 - Increases opportunities for request-level parallelism
 - Makes the system more tolerant of failures

Agenda

- Amdahl's Law
- Request Level Parallelism
- Administrivia
- MapReduce
 - Data Level Parallelism

Administrivia

- Midterm not graded yet
 - Please don't discuss anywhere until tomorrow!
- Lab 6 is today and tomorrow
- HW3 due this Sunday (3/10)
 - Finish early because Proj2 is being released this week!
- Twitter Tech Talk on Hadoop/MapReduce
 - Thu, 3/7 at 6pm in the Woz (430 Soda)

Agenda

- Amdahl's Law
- Request Level Parallelism
- Administrivia
- MapReduce
 - Data Level Parallelism

Data-Level Parallelism (DLP)

• Two kinds:

- 1) Lots of data on many disks that can be operated on in parallel (e.g. searching for documents)
- 2) Lots of data in memory that can be operated on in parallel (e.g. adding together 2 arrays)
- 1) Lab 6 and Project 2 do DLP across many servers and disks using MapReduce
- 2) Lab 7 and Project 3 do DLP in memory using Intel's SIMD instructions

What is MapReduce?

- Simple data-parallel programming model designed for scalability and fault-tolerance
- Pioneered by Google
 - Processes > 25 petabytes of data per day
- Popularized by open-source Hadoop project
 - Used at Yahoo!, Facebook, Amazon, ...

Typical Hadoop Cluster

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth within rack, 8 Gbps out of rack
- Node specs (Yahoo terasort):
 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

What is MapReduce used for?

At Google:

- Index construction for Google Search
- Article clustering for Google News
- Statistical machine translation
- For computing multi-layer street maps

• At Yahoo!:

- "Web map" powering Yahoo! Search
- Spam detection for Yahoo! Mail

At Facebook:

- Data mining
- Ad optimization
- Spam detection

Example: Facebook Lexicon

www.facebook.com/lexicon(no longer available)

MapReduce Design Goals

1. Scalability to large data volumes:

1000's of machines, 10,000's of disks

2. Cost-efficiency:

- Commodity machines (cheap, but unreliable)
- Commodity network
- Automatic fault-tolerance (fewer administrators)
- Easy to use (fewer programmers)

Jeffrey Dean and Sanjay Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Communications of the ACM, Jan 2008.

MapReduce Processing: "Divide and Conquer" (1/2)

- Apply Map function to user supplied record of key/value pairs
 - Slice data into "shards" or "splits" and distribute to workers
 - Compute set of intermediate key/value pairs

```
- map(in_key,in_val) ->
    list(out_key,interm_val)
```

- Apply Reduce operation to all values that share same key in order to combine derived data properly
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values
 - reduce(out_key,list(interm_val)) ->
 list(out_val)

MapReduce Processing: "Divide and Conquer" (2/2)

- User supplies Map and Reduce operations in functional model
 - Focus on problem, let MapReduce library deal with messy details
 - Parallelization handled by framework/library
 - Fault tolerance via re-execution

Execution Setup

- Map invocations distributed by partitioning input data into M splits
 - Typically 16 MB to 64 MB per piece
- Input processed in parallel on different servers
- Reduce invocations distributed by partitioning intermediate key space into R pieces
 - e.g. hash(key) mod R
- User picks M >> # servers, R > # servers
 - Big M helps with load balancing, recovery from failure
 - One output file per R invocation, so not too many

3/06/2013

3/06/2013

29

31

3/06/2013

What Does the Master Do?

- For each map task and reduce task
 - State: idle, in-progress, or completed
 - Identity of worker server (if not idle)
- For each completed map task
 - Stores location and size of R intermediate files
 - Updates files and size as corresponding map tasks complete
- Location and size are pushed incrementally to workers that have in-progress reduce tasks

MapReduce Processing Time Line

- Master assigns map + reduce tasks to "worker" servers
- As soon as a map task finishes, worker server can be assigned a new map or reduce task
- Data shuffle begins as soon as a given Map finishes
- Reduce task begins as soon as all data shuffles finish
- To tolerate faults, reassign task if a worker server "dies"

MapReduce Processing Example: Count Word Occurrences (1/2)

- Pseudo Code: for each word in input, generate <key=word, value=1>
- Reduce sums all counts emitted for a particular word across all mappers

```
map(String input_key, String input_value):
    // input_key: document name
    // input_value: document contents
    for each word w in input_value:
        EmitIntermediate(w, "1"); // Produce count of words

reduce(String output_key, Iterator intermediate_values):
        // output_key: a word
        // intermediate_values: a list of counts
        int result = 0;
        for each v in intermediate_values:
            result += ParseInt(v); // get integer from key-value
            Emit(AsString(result));
```

MapReduce Processing Example: Count Word Occurrences (2/2)

Distribute

38

MapReduce Failure Handling

- On worker failure:
 - Detect failure via periodic heartbeats
 - Re-execute completed and in-progress map tasks
 - Re-execute in progress reduce tasks
 - Task completion committed through master
- Master failure:
 - Protocols exist to handle (master failure unlikely)
- Robust: lost 1600 of 1800 machines once, but finished fine

MapReduce Redundant Execution

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
- Solution: Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect: Dramatically shortens job completion time
 - 3% more resources, large tasks 30% faster

- a) MapReduce divides computers into 1 master and N-1 workers; masters assigns MR tasks
- **b)** Towards the end, the master assigns uncompleted tasks again; 1st to finish wins
- c) Reducers can start reducing as soon as they start to receive Map data
- d) Reduce worker sorts by intermediate keys to group all occurrences of same key

- a) MapReduce divides computers into 1 master and N-1 workers; masters assigns MR tasks
- **b)** Towards the end, the master assigns uncompleted tasks again; 1st to finish wins
- c) Reducers can start reducing as soon as they start to receive Map data
- d) Reduce worker sorts by intermediate keys to group all occurrences of same key

Summary

- Amdahl's Law
- Request Level Parallelism
 - High request volume, each largely independent
 - Replication for better throughput, availability
- Map Reduce Data Parallelism
 - Divide large data set into pieces for independent parallel processing
 - Combine and process intermediate results to obtain final result