3/06/2013

CS 61C: Great Ideas in
Computer Architecture

MapReduce

Guest Lecturer: Justin Hsia

Spring 2013 -- Lecture #18

Review of Last Lecture

e Performance — latency and throughput
 Warehouse Scale Computing

— Example of parallel processing in the post-PC era
— Servers on a rack, rack part of cluster

— Issues to handle include load balancing, failures,
power usage (sensitive to cost & energy efficiency)

— PUE = Total building power / IT equipment power

3/06/2013 Spring 2013 -- Lecture #18 2

Great Idea #4: Parallelism

Today’s Lecture

‘ Hardware
* Parallel Requests Warehouse
Assigned to computer Scale &
Computer &

.. Search “Garcia”

everage

* Parallel Threads Parallelism &

Assigned to core Achieve High

e.g. Lookup, Ads Performance
e Parallel Instructions Core Core

> 1 instruction @ one time Ii‘ilemory

. : . \

e.g. 5 pipelined instructions) Inpu‘s/Output
e Parallel Data s :

> 1 data item @ one time Instruction Unit(s) Functional

, cleboll Unit(s)
e.g. add of 4 pairs of words Rbiuia
e siaicicin Ag+By|A+B, | A,+B, | A+B, | | T~
 Hardware descriptions Htbioa il it e | e S
Cache Memory KN Logic Gates_

All gates functioning in . -
| - D
parallel at same time ~ 2 Do
\ .
3/06/2013 Spring 2013 -- Lecture #18 \\ 2 ’ 3 :

Agenda

e Amdahl’s Law

e Request Level Parallelism
e Administrivia

e MapReduce

— Data Level Parallelism

3/06/2013 Spring 2013 -- Lecture #18

Amdahl’s (Heartbreaking) Law

e Speedup due to enhancement E:

Exec time w/o0 E

Speed E =
PECCUP iy Exec time w/E

e Example: Suppose that enhancement E accelerates a
fraction F (F<1) of the task by a factor S (S>1) and the
remainder of the task is unaffected

e Exectime w/E = Exec Time w/o E x [(1-F) + F/S]
Speedup w/E=1/[(1-F) +F/S]

3/06/2013 Spring 2013 -- Lecture #18 5

Amdahl’s Law

e Speedup = 1

@-F o+ F
Non-sped-up part S N — Sped-up part

 Example: the execution time of half of the
program can be accelerated by a factor of 2.
What is the program speed-up overall?

1 1
05+05 - 05+025 - 133

2

3/06/2013 Spring 2013 -- Lecture #18 6

Consequence of Amdahl’s Law

e The amount of speedup that can be achieved
through parallelism is limited by the non-parallel
portion of your program!

20.00

18.00 ///
/ Parallel Portion
. 16.00 7 50‘;/0
Time o // —— 50%
= 12.00 A L
o /
Parallel Q 1000 7 —
. m L—1
portion o o A A
-) 6.00 /—’
Serial 4,00 V//——-—
portion z.oo.zé{ﬁ
1 2 3 4 5 T S Y E s 33 S S 58838 8o
Number of Processors Number of Processors

3/06/2013 Spring 2013 -- Lecture #18 7

Agenda

e Request Level Parallelism
e Administrivia

e MapReduce

— Data Level Parallelism

3/06/2013 Spring 2013 -- Lecture #18

Request-Level Parallelism (RLP)

e Hundreds or thousands of requests per
second
— Not your laptop or cell-phone, but popular

Internet services like web search, social
networking, ...

— Such requests are largely independent
e Often involve read-mostly databases

e Rarely involve strict read—write data sharing or
synchronization across requests

e Computation easily partitioned within a
request and across different requests

3/06/2013 Spring 2013 -- Lecture #18

Google Query-Serving Architecture

:

Google Web server ~ |=e———{ Spell checker

\ Ad server

" / / /1 \\ N VLV VN]
/ / 1]“ \\ \\\\ \ B |
’(11 \\ I
Index servers Document servers

3/06/2013 Spring 2013 -- Lecture #18 10

Anatomy of a Web Searc

e Google “Dan Garcia”
G‘])[M’k dan garcia

Web Images Maps Shopping More ~ Search tools

(=

About 27,400,000 results (0.12 seconds)

Dr. Dan Garcia : Full Frontal Nerdity

www._cs.berkeley_edu/~ddgarcia/

Dr. Dan Garcia ddgarcia@cs.berkeley edu. There are many things in life that will catch
your eye, but only a few will catch your heart...pursue those.

Teaching - Computer Graphics - Textures - Gamesman

Dan Garcia | EECS at UC Berkele

www_eecs berkeley edu/Faculty/Homepages/garcia._html

Dan Garcia. Senior Lecturer SOE. Research Areas. Education (EDUC); Computational
Game Theory; Graphics (GR) - Human-Computer Interaction (HCI) ...

Dan Garcia | LinkedIn

www_linkedin.com/in/ddgarcia

San Francisco Bay Area - Senior Lecturer SOE (tenured) at UC Berkeley

View Dan Garcia's professional profile on LinkedIn. Linkedin is the world's largest
business network, helping professionals like Dan Garcia discover inside ...

Dan Garcia - IMDb

www.imdb.com/name/nm2260106/

Dan Garcia. Producer: Terror Trap. ... No photo available. Represent Dan Garcia? Add
or change photos at IMDbPro. STARmeter. SEE RANK. Down 10,369 this ...

Images for dan garcia - Report images

3/06/2013

Anatomy of a Web Search (1 of 3)

e Google “Dan Garcia”

— Direct request to “closest” Google Warehouse Scale
Computer

— Front-end load balancer directs request to one of
many arrays (cluster of servers) within WSC

— Within array, select one of many Google Web Servers
(GWS) to handle the request and compose the
response pages

— GWS communicates with Index Servers to find
documents that contain the search words, “Dan”,
“Garcia”, uses location of search as well

— Return document list with associated relevance score

3/06/2013 Spring 2013 -- Lecture #18 12

Anatomy of a Web Search (2 of 3)

* |n parallel,
— Ad system: run ad auction for bidders on search terms
— Get images of various Dan Garcias

e Use docids (document IDs) to access indexed
documents

e Compose the page
— Result document extracts (with keyword in context)
ordered by relevance score

— Sponsored links (along the top) and advertisements
(along the sides)

3/06/2013 Spring 2013 -- Lecture #18 13

Anatomy of a Web Search (3 of 3)

 Implementation strategy
— Randomly distribute the entries
— Make many copies of data (a.k.a. “replicas”)
— Load balance requests across replicas

e Redundant copies of indices and documents
— Breaks up hot spots, e.g. “Gangnam Style”

— Increases opportunities for request-level
parallelism

— Makes the system more tolerant of failures

3/06/2013 Spring 2013 -- Lecture #18 14

Agenda

e Amdahl’s Law

e Request Level Parallelism
e Administrivia

e MapReduce

— Data Level Parallelism

3/06/2013 Spring 2013 -- Lecture #18

15

Administrivia

Midterm not graded yet

— Please don’t discuss anywhere until tomorrow!
Lab 6 is today and tomorrow
HW3 due this Sunday (3/10)

— Finish early because Proj2 is being released this
week!

Twitter Tech Talk on Hadoop/MapReduce
— Thu, 3/7 at 6pm in the Woz (430 Soda)

Agenda

e Amdahl’s Law

e Request Level Parallelism
e Administrivia

e MapReduce

— Data Level Parallelism

3/06/2013 Spring 2013 -- Lecture #18

17

Data-Level Parallelism (DLP)

e Two kinds:

1) Lots of data on many disks that can be operated
on in parallel (e.g. searching for documents)

2) Lots of data in memory that can be operated on
in parallel (e.g. adding together 2 arrays)

1) Lab 6 and Project 2 do DLP across many
servers and disks using MapReduce

2) Lab 7 and Project 3 do DLP in memory using
Intel’s SIMD instructions

3/06/2013 Spring 2013 -- Lecture #18 18

What is MapReduce?

e Simple data-parallel programming model
designed for scalability and fault-tolerance

 Pioneered by Google

— Processes > 25 petabytes of data per day

e Popularized by open-source Hadoop project

— Used at Yahoo!, Facebook, Amazon, ...
‘ﬁ}:_la[a[aza]
19

3/06/2013 Spring 2013 -- Lecture #18

Typical Hadoop Cluster

Aggregation switch

<+— 8 gigabit
) <+—» 1 gigabit
Rack switch
Node Node
-—'_ --.

40 nodes/rack, 1000-4000 nodes in cluster

e 1 Gbps bandwidth within rack, 8 Gbps out of rack

 Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

3/06/2013 Spring 2013 -- Lecture #18

20

What is MapReduce used for?

e At Google:
— Index construction for Google Search
— Article clustering for Google News
— Statistical machine translation
— For computing multi-layer street maps

e At Yahoo!:

— “Web map” powering Yahoo! Search
— Spam detection for Yahoo! Mail

e At Facebook:
— Data mining
— Ad optimization
— Spam detection

3/06/2013 Spring 2013 -- Lecture #18

21

Example: Facebook Lexicon
Search: | party tonight, hangover

Suggestions: Skiing, beach | hip hop, techno | happy birthday | eid

ﬂ party tonight [©4 hangover

1{‘&{\ 4 ';,1 H

| ! S NYTTT N
Wt '\ AU U A
Jl U JU Y }U \ ;‘ Ul /J'UUJ u\vﬁ J"J UAU .u‘! “ ‘w} U \»} U U 'l/'! U U !J\ } UAU ltﬁ\,/‘l U

[m 0]

www.facebook.com/lexicon(no longer available)
3/06/2013 Spring 2013 -- Lecture #18 22

MapReduce Design Goals

1. Scalability to large data volumes:
— 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:

— Commodity machines (cheap, but unreliable)

— Commodity network

— Automatic fault-tolerance (fewer administrators)
— Easy to use (fewer programmers)

Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Communications of the ACM, Jan 2008.
3/06/2013 Spring 2013 -- Lecture #18 23

MapReduce Processing:
“Divide and Conquer” (1/2)

e Apply Map function to user supplied record of
key/value pairs
— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs
— map(in_key,i1n_val) ->
list(out _key, interm val)

* Apply Reduce operation to all values that share same
key in order to combine derived data properly
— Combines all intermediate values for a particular key
— Produces a set of merged output values

— reduce(out_key, list(interm val)) ->
list(out val)

3/06/2013 Spring 2013 -- Lecture #18 24

MapReduce Processing:
“Divide and Conquer” (2/2)

e User supplies Map and Reduce operations in
functional model

— Focus on problem, let MapReduce library deal
with messy details

— Parallelization handled by framework/library
— Fault tolerance via re-execution

3/06/2013 Spring 2013 -- Lecture #18 25

Execution Setup

Map invocations distributed by partitioning input
data into M splits

— Typically 16 MB to 64 MB per piece
Input processed in parallel on different servers

Reduce invocations distributed by partitioning
intermediate key space into R pieces

— e.g. hash(key) mod R

User picks M >> # servers, R > # servers

— Big M helps with load balancing, recovery from failure
— One output file per R invocation, so not too many

MapReduce Processing

User
Program
(1) fork .-~ .., (1) fork

(1);fork

>
@) .- . @

split 0 :

split 1 / (4) local write

split 2 .(3) read @

split 3

split 4

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Shuffle phase

3/06/2013

1. MR 1st splits the

MapReduce Processing

input files into M = ayfork

“splits” then starts
many copies of
program on servers : assign assign

4)
User
Program
(1) fork .- .., (1) fork

split 0 /4
split 1 (4) local write
(3) read
s
split 3
split 4
Input Map Intermediate files
files phasr (on local disks)

3/06/2013

Shuffle phase

Reduce
phase

Output
files

MapReduce Processing

User
Program
.., (1) fork

2. One copy (the master)

is special. The rest are (1) fork .
workers. The master
picks idle workers and ._
assigns each 1 of M map
tasks or 1 of R reduce y
tasks.

(1)ifork

split 0

Spac | (@) local write
(3) read

()

split 3

split 4

& —
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Shuffle phase .

3/06/2013

MapReduce Processing

3. A map worker reads the
input split. It parses

key/value pairs of the input
data and passes each pair -
to the user-defined map ’

function.

-

N

split 0 /
split1 |— (4) local write
(3) read
ez |71 ()
split3 |
split 4
-
Input Map
files phasr (on local disks)

3/06/2013

(1) fork ..~

assign

— ,.._..m,.,,,»

Shuffle phase

Program
"-.__(I) fork

2) .. ~.. @

Intermediate files

(The intermediate
key/value pairs
produced by the map
function are buffered
in memory:.)

Reduce Output
phase files

30

MapReduce Processing

4. Periodically, the buffered e

pairs are written to local () fork .-“~~——"-._(1)fork
(I)gfork

disk, partitioned
into R regions by the @
(2_1,.. 2)

partitioning function.

é _~map reduce
split 0

\

split 1 (4) local write
(3) read

split 2 |)—P
split 3
split 4

H

E E /)
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Shuffle phase

3/06/2013

31

MapReduce Processing

5. When a reduce worker prlser (The sorting is needed
. . am
has read'all mte.rrned!ate Mok .~ mfok because typically many
data for its partition, it sorts -~ (ifork ™. different keys map to
it by the intermediate
y the same reduce task)
keys so that all occurrences @ .- @ '

assign assign

of the same key are :

_~map reduce
grouped together. V“ A T\
i S NN

split 0 /4 (6) write _ | output
split1 — c ' > file 0
() read (4) local write
split 2 |
split3 |
output
split 4 ™\ ™ file1
-
\
N
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files
3/06/2013 Shuffle phase .

6. Reduce worker iterates
over sorted intermediate
data and for each unique .
intermediate key, it passes
key and corresponding se’;-"'
of values to the user’s
reduce function.

MapReduce Processing

split 0

split 1

—

split 2 |

(3) read

split 3

split 4

N

Input
files

3/06/2013

A

(1) fork ..~

assign

(4) local write

Intermediate files
(on local disks)

Shuffle phase

2) .. "

The output of the
reduce function is
appended to a final
output file for this
reduce partition.

0 6 (6) write

vl

=

-

Reduce
phase

Output
files

33

7. When all map and reduce

tasks have be

the master wakes up the

user program.

The MapReduce call in user

MapReduce Processing

en completedi fork

|
2. ~, @

program returns back to a,s,f;%“
user code. '
=
split0 | A
7
split1 (— (4) local write
split 2 ‘(3) read .
SptSs
- O\
split 4 "
~
Input Map Intermediate files
files phasr (on local disks)

3/06/2013

Shuffle phase

Output of MR isin R
output files (1 per
reduce task, with file
names specified by
user); often passed

into another MR job.

output
file 0

Reduce Output
phase files

34

What Does the Master Do?

 For each map task and reduce task
— State: idle, in-progress, or completed
— |dentity of worker server (if not idle)

 For each completed map task

— Stores location and size of R intermediate files

— Updates files and size as corresponding map tasks
complete

e Location and size are pushed incrementally to
workers that have in-progress reduce tasks

3/06/2013 Spring 2013 -- Lecture #18 35

MapReduce Processing Time Line

Process

Time —-

User Program

Master

Worker |

Worker 2

Worker 3

Worker 4

MapReduce()

... wait ...

Assign tasks to worker machines...

Map |

Map 3

Map 2

Reduce |

Reduce 2

e Master assigns map + reduce tasks to “worker” servers

 As soon as a map task finishes, worker server can be
assigned a new map or reduce task

e Data shuffle begins as soon as a given Map finishes

e Reduce task begins as soon as all data shuffles finish
* To tolerate faults, reassign task if a worker server “dies”

3/06/2013

Spring 2013 -- Lecture #18

36

MapReduce Processing Example:
Count Word Occurrences (1/2)

e Pseudo Code: for each word in input, generate <key=word, value=1>
e Reduce sums all counts emitted for a particular word across all mappers

map (String input key, String input value):
// input key: document name
// input value: document contents
for each word w in input value:
EmitIntermediate(w, "1"); // Produce count of words

reduce (String output key, Iterator intermediate values) :
// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += ParseInt(v); // get integer from key-value
Emit (AsString (result)) ;

3/06/2013 Spring 2013 -- Lecture #18 37

MapReduce Processing Example:
Count Word Occurrences (2/2)

Distribute

that that is|is that thatlis not is not|is that it it is
Map 1 Map 2 Map 3 Map 4

is 1, that 2 is 1, that 2 is 2, not 2 is2,it2,that 1
Shuffle T e
. R v S’
is1,1,22 that3,2,1
it 2 not 2
Reduce 1 Reduce 2
is6;it 2 not 2; that 5

Collect \ /

is6;it 2; not 2; that 5

3/06/2013 Spring 2013 -- Lecture #18 38

MapReduce Failure Handling

e On worker failure:

— Detect failure via periodic heartbeats

— Re-execute completed and in-progress map tasks
— Re-execute in progress reduce tasks

— Task completion committed through master

e Master failure:
— Protocols exist to handle (master failure unlikely)

e Robust: lost 1600 of 1800 machines once, but
finished fine

3/06/2013 Spring 2013 -- Lecture #18

39

MapReduce Redundant Execution

* Slow workers significantly lengthen completion
time
— Other jobs consuming resources on machine
— Bad disks with soft errors transfer data very slowly
— Weird things: processor caches disabled (!!)

e Solution: Near end of phase, spawn backup
copies of tasks

— Whichever one finishes first "wins"

e Effect: Dramatically shortens job completion time
— 3% more resources, large tasks 30% faster

3/06/2013 Spring 2013 -- Lecture #18 40

Question: Which statements are NOT
TRUE about about MapReduce?

Qf

CS

a) MapReduce divides computers into 1 master
and N-1 workers; masters assigns MR tasks

b) Towards the end, the master assigns
uncompleted tasks again; 15t to finish wins

¢) Reducers can start reducing as soon as they
start to receive Map data

d) Reduce worker sorts by intermediate keys
to group all occurrences of same key

41

Question: Which statements are NOT
TRUE about about MapReduce?

Qf

CS

a) MapReduce divides computers into 1 master
and N-1 workers; masters assigns MR tasks

b) Towards the end, the master assigns
uncompleted tasks again; 15t to finish wins

¢) Reducers can start reducing as soon as they
start to receive Map data

d) Reduce worker sorts by intermediate keys
to group all occurrences of same key

42

Summary

e Amdahl’s Law
e Request Level Parallelism

— High request volume, each largely independent
— Replication for better throughput, availability
* Map Reduce Data Parallelism

— Divide large data set into pieces for independent
parallel processing

— Combine and process intermediate results to
obtain final result

