CS 61C: Great Ideas in
Computer Architecture

The Flynn Taxonomy,
Intel SIMD Instructions

Instructor: Justin Hsia

3/08/2013 Spring 2013 -- Lecture #19

Great Idea #4: Parallelism

Software || Hardware S -

Parallel Requests Warehouse o Smart
Assigned to computer Scale Phone
e.g. search “Garcia” Computer %

Leverage

Parallel Threads p, oo & 7
Assigned to core Achieve High e e
e.g. lookup, ads Performance % ,,,,,, Computer “~.__

Parallel Instructions & Core . | core

> linstruction @ one time Memory
A
e.g. 5 pipelined instructions Inpu‘\/Output
* Parallel Data we are her

> 1 data item @ one time Instruction Unit(s) Functional
L ;
e.g. add of 4 pairs of words skt Unit(s)

Hardware descriptions oz ik) ke k|
Cache Memory KN

All gates functioning in
parallel at same time

\,

3/08/2013 Spring 2013 -- Lecture #19

Hardware vs. Software Parallelism

S| oo

Hardware

Matrix Multiply written in MatLab
running on an Intel Pentium 4

Windows Vista Operating System
running on an Intel Pentium 4

Serial

Matrix Multiply written in MATLAB
Parallel | running on an Intel Xeon e5345
(Clovertown)

Windows Vista Operating System
running on an Intel Xeon 5345
(Clovertown)

¢ Choice of hardware and software parallelism are
independent

— Concurrent software can also run on serial hardware
— Sequential software can also run on parallel hardware
* Flynn’s Taxonomy is for parallel hardware

3/08/2013 Spring 2013 -- Lecture #19

3/8/2013

Review of Last Lecture

¢ Amdabhl’s Law limits benefits of parallelization
¢ Request Level Parallelism
— Handle multiple requests in parallel
(e.g. web search)
¢ MapReduce Data Level Parallelism

— Framework to divide up data to be processed in
parallel

— Mapper outputs intermediate key-value pairs

— Reducer “combines” intermediate values with
same key

3/08/2013 Spring 2013 -- Lecture #19

Agenda

e Flynn’s Taxonomy

* Administrivia

* Data Level Parallelism and SIMD
* Bonus: Loop Unrolling

3/08/2013 Spring 2013 -- Lecture #19 4

Flynn’s Taxonomy

Data Streams
Single Multiple
Instruction | Single ‘ SISD: Intel Pentium 4 SIMD: SSE instructions of x86
Streams Multiple ‘ MISD: No examples today MIMD: Intel Xeon 5345 (Clovertown)

¢ SIMD and MIMD most commonly encountered today
* Most common parallel processing programming style:
Single Program Multiple Data (“SPMD”)
— Single program that runs on all processors of an MIMD
— Cross-processor execution coordination through conditional
expressions (will see later in Thread Level Parallelism)
* SIMD: specialized function units (hardware), for handling
lock-step calculations involving arrays

— Scientific computing, signal processing, multimedia (audio/video
processing)

3/08/2013 Spring 2013 -- Lecture #19 6

Single Instruction/Single Data Stream

SISD | Instruction Pool | * Sequential computer
that exploits no
parallelism in either the
instruction or data
streams

Examples of SISD
architecture are

traditional uniprocessor
machines

Processing Unit

Data Pool

3/8/2013

Multiple Instruction/Single Data Stream

* Exploits multiple
instruction streams
against a single data
stream for data
operations that can be

naturally parallelized

(e.g. certain kinds of

array processors)

MISD | Instruction Pool |

Data Pool

* MISD no longer
L commonly
encountered, mainly of
historical interest only

Single Instruction/Multiple Data Stream

SIMD | Instruction Pool | * CompUter that applies
a single instruction
@ stream to multiple data

streams for operations
that may be naturally
parallelized

(e.g. SIMD instruction
extensions or Graphics
Processing Unit)

Data Pool

Multiple Instruction/Multiple Data Stream

MIMD | InstructionPool | ° Multiple autonomous

processors
L simultaneously executing
A mufanecusy o
different instructions on
. L different data
¢ MIMD architectures
" L‘ include multicore and

__,._ L Warehouse Scale

Computers

Data Pool

Agenda

e Administrivia

e Data Level Parallelism and SIMD

Spring 2013 -- Lecture #19

¢ Midterms graded

Administrivia

¢ HW3 due Sunday

¢ Proj2 (MapReduce) to be released soon
— Part 1 due 3/17
— Part 2 due 3/24

— Work in partners, preferably at least 1 knows Java

— Collect after lecture today or from Lab TA next
week

20135p UC Berkeley CS61C Midterm Histogram
(Mean, Median) ~= 39; StDev = 15.7

: . 4
32
3 | 3 o 3
; I I I I I

3
0 5 10 15 20 25 30 35 40 45 50 55
Score. Bucket is max of range. E.g., 75= (70,75]

3/08/2013 Spring 2013 -- Lecture #19

& & 8
oImn8o
Sase
838
@
8
&
s

ey
o

Number of Students (n=346)
8 &K &8 &

ey
©

w

o
0

n 2

11
III .
60 65 70 75

13

3/8/2013

Agenda

e Flynn’s Taxonomy

e Administrivia

¢ Data Level Parallelism and SIMD
* Bonus: Loop Unrolling

3/08/2013 Spring 2013 -- Lecture #19 14

SIMD Architectures

e Data-Level Parallelism (DLP): Executing one
operation on multiple data streams

¢ Example: Multiplying a coefficient vector by a
data vector (e.g. in filtering)

v[i]l := c[i] x x[i], O<i<n
¢ Sources of performance improvement:

— One instruction is fetched & decoded for entire
operation

— Multiplications are known to be independent
— Pipelining/concurrency in memory access as well

3/08/2013 Spring 2013 — Lecture #19 Slide 15

“Advanced Digital Media Boost”

¢ To improve performance, Intel’s SIMD instructions
— Fetch one instruction, do the work of multiple instructions
— MMX (MultiMedia eXtension, Pentium Il processor family)
— SSE (Streaming SIMD Extension, Pentium Il and beyond)

Source 1 I X3 I X2 I X1 l X0 }
Source 2 I Y3 | Y2 | Y1 ‘ Yo ‘
Destination ‘ X30PY3 | X2 0P Y2 X10PY1 ‘ X0 OP YO |

3/08/2013 Spring 2013 ~ Lecture #19 16

Example: SIMD Array Processing

for each fin array d d
f = sqrt(f) pseudocoae

for each fin array {
load f to the floating-point register
calculate the square root ~ SISD
write the result from the register to memory

}

for every 4 members in array {
load 4 members to the SSE register
calculate 4 square roots in one operation ~ SIMD
write the result from the register to memory

3/08/2013 Spring 2013 -- Lecture #19

SSE Instruction Categories
for Multimedia Support

Unsigned add/subtract | Eight 8-bit or Four 16-bit
Saturating add/subtract | Eight 8-bit or Four 16-bit

Max,/min/minimum Eight 8-bit or Four 16-bit

Average Eight 8-bit or Four 16-bit
Shift right/left Eight 8-bit or Four 16-bit

¢ Intel processors are CISC (complicated instrs)

e SSE-2+ supports wider data types to allow
16 x 8-bit and 8 x 16-bit operands

3/08/2013 Spring 2013 -- Lecture #19 18

Intel Architecture SSE2+
128-Bit SIMD Data Types

Fundamental 128-Bit Packed SIMD Data Types

N N N O A A T
127 122121 9695 8079 6463 4847 3231 1615 0 16/128bits

I I I I I l | | | Packed Words

127 122121 9695 8079 6463 4847 3231 1615 o 8/128bits

| | | | | Packed Doublewords
127 96 95 6463 3231 0 4/128bits

| | | Packed Quadwords
27 6463 0 2/128bits

¢ Note: in Intel Architecture (unlike MIPS) a word is 16 bits
— Single precision FP: Double word (32 bits)
— Double precision FP: Quad word (64 bits)

3/08/2013 Spring 2013 -- Lecture #19

XMM Registers

¢ Architecture extended with eight 128-bit data registers
— 64-bit address architecture: available as 16 64-bit registers (XMM8 —
XMM15)
— e.g. 128-bit packed single-precision floating-point data type
(doublewords), allows four single-precision operations to be

performed simultaneously
127 0

3/8/2013

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMMO

3/08/2013 Spring 2013 -- Lecture #19 20

SSE/SSE2 Floating Point Instructions

{SS} Scalar Single precision FP: 1 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: 4 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: 1 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or 2 64-bit operands in a 128-bit register

Spring 2013 -- Lecture #19 21

SSE/SSE2 Floating Point Instructions
mm

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register
{A} 128-bit operand is aligned in memory

{U} means the 128-bit operand is unaligned in memory

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand

3/08/2013 Spring 2013 - Lecture #19 2

Example: Add Single
Precision FP Vectors

Computation to be performed:
vec_res.x = vl.x + v2.X;
vec_res.y = vl.y + v2.y;
vec_res.z =
vec_res.w

move from mem to XMM register,
memory aligned, packed single precision

add from mem to XMM register,
packed single precision

SSE Instruct move from XMM register to mem,
' memory aligned, packed single precision

// vi1.] vi.x -> xmmO
addps , %xmm0
/7 viowrg W | vi.z+v2.z | vli.y+v2.y | vli.x+v2.x

movaps %xmmO, address-of-vec_res

3/08/2013 Spring 2013 -- Lecture #19 23

Packed and Scalar Double-Precision
Floating-Point Operations

I X1 I X0 I
Packed | > - |
Double — : !
(°D) & §5
Y
X10PY1 X0OP Y0 |
B X1 X0 ‘
Scalar > - ‘
Double — -
(D) (&
A
{ X1 X0 OP YO I

3/08/2013 Spring 2013 - Lecture #19 24

Example: Image Converter (1/5)

¢ Converts BMP (bitmap) image to a YUV (color
space) image format:

— Read individual pixels from the BMP image,
convert pixels into YUV format

— Can pack the pixels and operate on a set of pixels with
a single instruction

* Bitmap image consists of 8-bit monochrome
pixels
— By packing these pixel values in a 128-bit register, we
can operate on 128/8 = 16 values at a time
— Significant performance boost

3/8/2013

Example: Image Converter (2/5)

* FMADDPS — Multiply and add packed single
precision floating point instruction <—— CISC Instr!

¢ One of the typical operations computed in
transformations (e.g. DFT or FFT)

N
P = f(n) xx(n)

n=1

Example: Image Converter (3/5)

e FP numbers f(n) and x(n) in srcl and src2; p in dest;
¢ Cimplementation for N = 4 (128 bits):
for (int i = 0; i < 4; i++)
p = p + srcl[i] * src2[i];
1) Regular x86 instructions for the inner loop:
fmul [.]
faddp [.-]

— Instructions executed: 4 * 2 = 8 (x86)

Example: Image Converter (4/5)

e FP numbers f(n) and x(n) in srcl and src2; p in dest;
¢ Cimplementation for N = 4 (128 bits):
for (int i = 0; i < 4; i++)
p = p + srcl[i] * src2[i];
2) SSE2 instructions for the inner loop:
//xmm0=p, xmml=srcl[i], xmm2=src2[i]
mulps %xmml,%xmm2 // xmm2 * xmml -> xmm2
addps %xmm2,%xmmO // xmmO + xmm2 -> xmmO
— Instructions executed: 2 (SSE2)

Example: Image Converter (5/5)

¢ FP numbers f(n) and x(n) in src1 and src2; p in dest;
e Cimplementation for N = 4 (128 bits):
for (int 1 = 0; 1 < 4; i++)
p = p + srcl[i] * src2[i];
3) SSE5 accomplishes the same in one instruction:
fmaddps %xmmO, %xmml, %xmm2, %xmmO
// xmm2 * xmml + xmmO -> xmmO

// multiply xmml x xmm2 packed single,
// then add product packed single to sum
in xmm0

8/2013 Spring 2013 -- Lecture #19

Summary

¢ Flynn Taxonomy of Parallel Architectures

— SIMD: Single Instruction Multiple Data

— MIMD: Multiple Instruction Multiple Data

— SISD: Single Instruction Single Data

— MISD: Multiple Instruction Single Data (unused)

¢ |ntel SSE SIMD Instructions

— One instruction fetch that operates on multiple
operands simultaneously

—128/64 bit XMM registers

13 - Lecture #19

3/8/2013

BONUS SLIDES

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should

be easily readable and the material will be
touched upon in the following lecture.

Agenda

e Bonus: Loop Unrolling

Data Level Parallelism and SIMD

¢ SIMD wants adjacent values in memory that
can be operated in parallel

¢ Usually specified in programs as loops

for(i=0; i<1000; i++)
x[i] = x[i] + s;

* How can we reveal more data level parallelism
than is available in a single iteration of a loop?
— Unroll the loop and adjust iteration rate

3/08/2013 Spring 2013 -- Lecture #19 33

Looping in MIPS

Assumptions:
$s0 = initial address (beginning of array)
$s1 - scalar value s
$s2 - termination address (end of array)

Loop:
Tw $t0,0($s0)

addu $t0,$t0,$s1 # addsto array element
sw $t0,0($s0) # store result

addiu $s0,%$s0,4 # move to next element
bne $s0,%$s2, # repeat Loop if not done

Loop Unrolled

Loop: lw $t0,0($s0)
addu $t0,$t0,$s1 NOTE:
sw - $t0,0($50) 1. Using different registers

lw $t1,4($s0) L
addu $t1.$t1,9s1 eliminate stalls

sw S$t1,4($s0)

lw $t2,8($s0) 2. Loop overhead encountered
addu $t2,5t2,9s1 only once every 4 data

sw - $t2,8($50) iterations

lw $t3,12($s0)
addu $t3,5t3,5s1
sw $t3,12($s0)
addiu $s0,550,16
bne $s0,$s2,Loop

3. This unrolling works if
loop_limit mod 4 = 0

3/08/2013 Spring 2013 -- Lecture #19

Loop Unrolled Scheduled

Note: We just switched from integer instructions to single-precision FP instructions!

Loop: lwcl $t0,0($s0) \
lwel $t1,4($s0) 4 Loads side-by-side:
Iwel $t2,8($s0) Could replace with 4 wide SIMD Load
lwel $t3,12($s0) /
add.s $t0,5t0,$s1
add.s $t1,5t1,5s1 N 4 Adds side-by-side:
add.s $t2,5t2,$s1 Could replace with 4 wide SIMD Add
add.s $t3,5t3,5s1 /
swcl $t0,0($s0)
swel $t1,4($s0) \ 4 Stores side-by-side:
swel $t2,8($s0) Could replace with 4 wide SIMD Store
swcl $t3,12($s0) /
addiu $s0,$s0,16
bne $s0,$s2,Loop

13 - Lecture #19

Loop Unrolling in C

¢ Instead of compiler doing loop unrolling, could do

it yourself in C:

i=i+4) {

for(i=0; i<1000; i++)
x[i] = x[i] + s;
Loop Unroll
for(i=0; i<1000;
x[i] = x[i] + s;
x[i+1] = x[i+1] + s;
x[i+2] = x[i+2] + s;
x[i+3] = x[i+3] + s;
}

What is
downside
of doing
this in C?

3/8/2013

Generalizing Loop Unrolling

¢ Take a loop of n iterations and perform a
k-fold unrolling of the body of the loop:
— First run the loop with k copies of the body
floor(n/k) times
— To finish leftovers, then run the loop with 1 copy
of the body n mod k times

¢ (Will revisit loop unrolling again when get to
pipelining later in semester)

