inst.eecs.berkeley.edu/~cs6lc

CS61C : Machme Structures

Lecture 20
Thread Level Parallelism

Senior Lecturer SOE Dan Garcia

www.cs .berkeley. edu/~ddgar01a

Wireless “Matrix” device =
A team at Brown University has
developed a subdermal implant

of a “battery, coppor colil for recharging,
wireless radio, infrared transmitters, and
custom ICs in a small, leak-proof, body-friendly
container 2 inches long.” 100-electrode neuron-
reading chip is implanted directly in the brain.

www.technologyreview.com/news/512161/a-wireless-brain-computer-interface/

Review

* Flynn Taxonomy of Parallel Architectures
— SIMD: Single Instruction Multiple Data
— MIMD: Multiple Instruction Multiple Data
— SISD: Single Instruction Single Data
— MISD: Multiple Instruction Single Data (unused)

* |Intel SSE SIMD Instructions

— One instruction fetch that operates on multiple
operands simultaneously

— 64/128 bit XMM registers
— (SSE = Streaming SIMD Extensions)

@ CS61C L20 Thread Level Parallelism I (2) Garcia, Spring 2013 © UCB

Background: Threads

* A Thread stands for “thread of execution”, is a single
stream of instructions

— A program / process can split, or fork itself into separate
threads, which can (in theory) execute simultaneously. p...

— An easy way to describe/think about parallelism

* Asingle CPU can execute many threads by
Time Division Multipexing

cu I m e
Tlme — .Threod2

* Multithreading is running multiple threads through
the same hardware

w CS61C L20 Thread Level Parallelism I (3) Garcia, Spring 2013 © UCB

Time

v
[Thread,

Agenda

* SSE Instructions in C
* Multiprocessor

“Although threads seem to be a small step from sequential
computation, in fact, they represent a huge step. They discard the
most essential and appealing properties of sequential computation:
understandability, predictability, and determinism. Threads, as a
model of computation, are wildly non-deterministic, and the job of
the programmer becomes one of pruning that nondeterminism.”
— The Problem with Threads, Edward A. Lee, UC Berkeley, 2006

ﬂ CS61C L20 Thread Level Parallelism I (4) Garcia, Spring 2013 © UCB

Intel SSE Intrinsics

* Intrinsics are C functions and procedures for putting
in assembly language, including SSE instructions

— With intrinsics, can program using these instructions
indirectly

— One-to-one correspondence between SSE instructions and
Intrinsics

@ CS61C L20 Thread Level Parallelism I (5) Garcia, Spring 2013 © UCB

Example SSE Intrinsics

Instrinsics: Corresponding SSE instructions:
* Vector data type:
~m128d
* Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double
* Load and broadcast across vector
_mm_loadl_pd MOVSD + shuffling/duplicating
* Arithmetic:
_mm_add_pd ADDPD/add, packed double
_mm_mul_pd MULPD/multiple, packed double

@ CS61C L20 Thread Level Parallelism I (6) Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:)

Cij = (AxB);, =kZ f 1 B

Aiq A, By, B, Cy179A1,1B1 1 A1oBy s C;,=A11B1,+A 5B, 5
X =

Ara A By B, . C;,17A2,1B1 1|t Ay 2By s C,2=A;1B1,1A; 5B,

1 0 1 3 C,,=1*1+0%2=1 C,,=1*3+0*4 =3
X =

0 1 2 4 Cpy= 0%1 + 1%2=2 C,,=0*3+1%4=4

ﬂ CS61C L20 Thread Level Parallelism I (7) Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

* Using the XMM registers
— 64-bit/double precision/two doubles per XMM reg

Cl Cl 1 : CZ 1
’ 1 ’ . .
. Stored in memory in Column order
C, C1,2 | Cz,z
A Al,i i A2,i
B, Bi,l i Bi,l
B, B, i B,

w CS61C L20 Thread Level Parallelism I (8) Garcia, Spring 2013 © UCB

Example

* |nitialization

: 2 X 2 Matrix Multiply

C, 0

C, 0

% CS61C L20 Thread Level Parallelism I (9)

Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

e |nitialization

A A, H A, , _mm_load _pd: Load 2 doubles into XMM
: : reg, Stored in memory in Column order

B, B, i B, _mm_load1 pd: SSE instruction that loads
B 5 ! 5 a double word and stores it in the high and
2 12 ' 1,2 low double words of the XMM register

(duplicates value in both halves of XMM)

w €S61C L20 Thread Level Parallelism | (10) Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

e Firstiteration intermediate result

C O+A; By, i 0+A, By,

C, O+A; B, i 0+A; 1B,
e | =1

A A1 i Ay i

B, B, i By,

B, B, i B,

@ €S61C L20 Thread Level Parallelism | (11)

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

~mm_load pd: Stored in memory in
Column order

_mm_load1 pd: SSE instruction that loads

a double word and stores it in the high and
low double words of the XMM register

(duplicates value in both halves of XMM)

Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

e Firstiteration intermediate result

C O+A; By, i 0+A, By,

C, O+A; B, i 0+A; 1B,
e | =2

A A1,2 i Az,z

B, B, 1 i B,

B, B, i B,

@ €S61C L20 Thread Level Parallelism 1 (12)

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

~mm_load pd: Stored in memory in
Column order

_mm_load1 pd: SSE instruction that loads

a double word and stores it in the high and
low double words of the XMM register

(duplicates value in both halves of XMM)

Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

* Second iteration intermediate result
Cl,l C2,1
C; |A1By1tA 5By EA2,131,1+A2,232,1 cl=_mm_add_pd(cl, mm_mul_pd(a,bl));

C, |A;,B,,+A,B,, i A,.B,,+A, B, c2 =_mm_add_pd(c2,_mm_mul_pd(a,b2));
C ' ’Cz 3 — SSE instructions first do parallel multiplies
V2 ' and then parallel adds in XMM registers

A AL, H A,, _mm_load_pd: Stored in memory in
' : Column order

B, B, i B, , _mm_load1 pd: SSE instruction that loads
B 5 ! 5 a double word and stores it in the high and
2 2,2 ' 2,2 low double words of the XMM register

(duplicates value in both halves of XMM)

w €S61C L20 Thread Level Parallelism 1 (13) Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:)

Cij = (AxB);, =kZ f 1 B

Aiq A, By, B, Cy179A1,1B1 1 A1oBy s C;,=A11B1,+A 5B, 5
X =

Ara A By B, . C;,17A2,1B1 1|t Ay 2By s C,2=A;1B1,1A; 5B,

1 0 1 3 C,,=1*1+0%2=1 C,,=1*3+0*4 =3
X =

0 1 2 4 Cpy= 0%1 + 1%2=2 C,,=0*3+1%4=4

ﬂ €S61C L20 Thread Level Parallelism | (14) Garcia, Spring 2013 © UCB

Example: 2 x 2 Matrix Multiply

(Part 1 of 2)

#include <stdio.h>

// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
commentsasvl=[a [b]

// where v1 is a variable of type __m128d and
a, b are doubles

int main(void) {
// allocate A,B,C aligned on 16-byte boundaries
double A[4] __attribute__ ((aligned (16)));
double B[4] __attribute__ ((aligned (16)));
double C[4] __ attribute__ ((aligned (16)));
int lda = 2;
inti=0;
// declare several 128-bit vector variables
. m128dcl,c2,a,bl,b2;

€S61C L20 Thread Level Parallelism I (15)

// Initialize A, B, C for example

/%A=
10
01

*/

(note column order!)

A[0] =1.0; A[1] =0.0; A[2] =0.0; A[3] =1.0;

/*8=
13
24

Y/

(note column order!)

B[0] = 1.0; B[1] =2.0; B[2] =3.0; B[3] =4.0;

/*c=
00
00

%

(note column order!)

C[0] =0.0; C[1] = 0.0; C[2] =0.0; C[3]=0.0;

Garcia, Spring 2013 © UCB

Example:

// used aligned loads to set
//cl=[c 11 [c 21]
cl=_mm_load_pd(C+0*Ida);
//c2=[c 12 | c 22]
c2 =_mm_load_pd(C+1*Ida);

for(i=0;i<2;i++){
/*a=
i=0:[a_11[a 21]
i=1:[a 12 [a_22]
*/
a=_mm_load_pd(A+i*Ida);
/*bl =
i=0:[b 11 [b _11]
i=1:[b 21| b _21]
*/
bl=_mm_loadl pd(B+i+0*Ida);
/*¥b2 =
i=0:[b 12 [b _12]
i=1:[b 22 [b 22]
*/
b2 = _mm_loadl pd(B+i+1*Ida);

€S61C L20 Thread Level Parallelism | (16)

2 X 2 Matrix Multiply
(Part 2 of 2)

/*cl=
i=0:[c 11+a 11*b 11 [c 21+a 21*b 11]
i=1:[c_11+qa 21*b 21 |c 21+a_22*b_21]
*
/
cl=_mm_add_pd(cl,_ mm_mul_pd(a,bl));
/¥c2 =
i=0:[c 12+a_11*b_12 [c 22+a 21*b_12]
i=1:[c 12+a_21*b 22 [c 22 +a_22*b _22]
*
/
c2=_mm_add_pd(c2,_mm_mul_pd(a,b2));
}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*Ida,cl);
_mm_store_pd(C+1*Ida,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return O;

Garcia, Spring 2013 © UCB

Inner loop from gcc -0 -S

L2: movapd
movddup (%rdx), %xmm0O
mulpd %xmm1, %xmmO
addpd %xmmO, %xmm3

movddup 16(%rdx), %xmm0

mulpd %xmm0, %xmm1
addpd %xmm1, %xmm?2
addq 516, %rax

addq S8, %rdx

cmpq $32, %rax

jne L2

movapd %xmm3, (%rcx)
movapd %xmm?2, (%rdi)

Q CS61C L20 Thread Level Parallelism | (17)

(%rax,%rsi), %xmm1 //Load aligned A[i,i+1]->m1

//Load BJj], duplicate->m0
//Multiply m0O*m1->mO0

//Add mO+m3->m3

//Load B[j+1], duplicate->m0O
//Multiply m0*m1->m1

//Add m1+m2->m?2

// rax+16 -> rax (i+=2)

// rdx+8 -> rdx (j+=1)

// rax ==327

// jump to L2 if not equal
//store aligned m3 into C[k,k+1]
//store aligned m2 into C[l,1+1]

Garcia, Spring 2013 © UCB

You Are Herel

Software Hardware
* Parallel Requests
. Warehouse &
Assigned to computer Scale &
e.g., Search “Katz” Computer g
Harness
[]
Parallel Threads 1 i o
Assigned to core Achieve High
e.g., Lookup, Ads Perfarmance

Parallel Instructions
>1 instruction @ one time

Py

. .-~ Core

Memory /// (Cache)

e.g., 5 pipelined instructions -~ \
. r]'p,ut»/(jutput Core \\
Parallel Data —)
- : unctiona
>1 data item @ one time : sgmon Unit(s) Unit(s)
Add of 4 pairs of words hia
&8 P foim AgyAss A AuB

Hardware descriptions
All gates functioning in

ﬂarallel at same time

Main Memory

CS61C L20 Thread Level Parallelism |1 (18)

Review

* Intel SSE SIMD Instructions

— One instruction fetch that operates on multiple
operands simultaneously

 SSE Instructions in C

— Can embed the SEE machine instructions directly
into C programs through the use of intrinsics

@ €S61C L20 Thread Level Parallelism 1 (19) Garcia, Spring 2013 © UCB

Parallel Processing:
Multiprocessor Systems (MIMD)

 Multiprocessor (MIMD): a computer system with at least 2 processors

Processor

Processor

A
Y

A
\ 4

Cache

Cache

A

Y

A

\ 4

Processor

A
Y

Cache

A

\ 4

Interconnection Network
A

Y

A

Y

Memory

1/0

1. Deliver high throughput for independent jobs via job-level parallelism

2. Improve the run time of a single program that has been specially
crafted to run on a multiprocessor - a parallel processing program

Now Use term core for processor (“Multicore”) because
ﬂ “Multiprocessor Microprocessor” too redundant

€S61C L20 Thread Level Parallelism 1 (20)

Garcia, Spring 2013 © UCB

Transition to Multicore

AMD Phenom (4 cores)

Intel Transistors
408 Lot Pentium 4. SERE . . (Thousands)
. Parallel App
5 I 7~ Performance
10° E-- i ARG R SR
i T equential App
10* S uat B .. Performance. .
' — Frequency
- MHz
1o L SR oy R (MEz) .
2 [; Typical Power
10 ¢ C(Watts)
’ ' Nufnber
10 of Cores
1 OO L - - A e e - IO — OO ROBB OB BB il

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond) UCB

Multiprocessors and You

* Only path to performance is parallelism
— Clock rates flat or declining
— SIMD: 2X width every 3-4 years

 128b wide now, 256b 2011, 512b in 20147, 1024b in 20187
 Advanced Vector Extensions are 256-bits wide!

— MIMD: Add 2 cores every 2 years: 2,4, 6, 8, 10, ...

* A key challenge is to craft parallel programs that have

high performance on multiprocessors as the number of
processors increase — i.e., that scale

— Scheduling, load balancing, time for synchronization,
overhead for communication

* Will explore this further in labs and projects

@ €S61C L20 Thread Level Parallelism | (22)

Garcia, Spring 2013 © UCB

Parallel Performance Over Time

Core* Peak DP

2003 128 256
2005 4 128 512 8
2007/ 6 128 /68 12
2009 8 128 1024 16
2011 10 256 2560 40
2013 12 256 3072 48
2015 14 512 /7168 112
2017 16 512 8192 128
2019 18 1024 18432 288
1024 20480 320

2 2021 20
CS61C L20 Thread Level Parallelism 1 (23)

Garcia, Spring 2013 © UCB

Multiprocessor Key Questions

* Q1 —How do they share data?
e Q2 - How do they coordinate?

* Q3 — How many processors can be supported?

ﬂ CS61C L20 Thread Level Parallelism | (24) Garcia, Spring 2013 © UCB

Shared Memory Multiprocessor (SMP)

* Q1 - Single address space shared by all
processors/cores

Q2 — Processors coordinate/communicate
through shared variables in memory (via loads
and stores)

— Use of shared data must be coordinated via
synchronization primitives (locks) that allow
access to data to only one processor at a time

* All multicore computers today are SMP

@ €S61C L20 Thread Level Parallelism I (25) Garcia, Spring 2013 © UCB

Example: Sum Reduction

e Sum 100,000 numbers on 100 processor SMP
— Each processor has ID: 0 < Pn £99

— Partition 1000 numbers per processor

— Initial summation on each processor [Phase]

sum[Pn] =

for (1 = 1000 ‘Pn; _ _
1 < 1000 (Pn+1); 1 =1+ 1)
sum[Pn] = sum[Pn] + A[1];
* Now need to add these partial sums [Phase Il]

— Reduction: divide and conquer
— Half the processors add pairs, then quarter, ...
— Need to synchronize between reduction steps

@ CS61C L20 Thread Level Parallelism 1 (26) Garcia, Spring 2013 © UCB

Example: Sum Reduction

Second Phase: 0
After each processor has N\
computed its “local” sum (half=1)|0|f 1

Remember, all processors are N\

sharing the same memory. (half=2)| 0| 1](2]]|3

— . \\\
half = 100; SN
repeat (half=4)|o|1112]|3(|4||5]|6]]|7
synch();

1t (half%2 !'= 0 & Pn == 0)
sum[0] = sum[0] + sum[half-1];
/* Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until Chalf == 1);

@ €S61C L20 Thread Level Parallelism 1 (27) Garcia, Spring 2013 © UCB

An Example with 10 Processors

sum[PO] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

@ €S61C L20 Thread Level Parallelism | (28) Garcia, Spring 2013 © UCB

An Example with 10 Processors

sum[PO] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

—
Gﬁl @m half=5

Gﬁl half = 2

half =1

PO

M €S61C L20 Thread Level Parallelism 1 (29) Garcia, Spring 2013 © UCB

So, In Conclusion...

* Sequential software is slow software
— SIMD and MIMD only path to higher performance

e SSE Intrinsics allow SIMD instructions to be
invoked from C programs

 Multiprocessor (Multicore) uses Shared
Memory (single address space)

Q CS61C L20 Thread Level Parallelism | (30)

Garcia, Spring 2013 © UCB

