inst.eecs.berkeley.edu/~cs6lc

CS61C : Machine Structures

Lecture 21
Thread Level Parallelism Il

Senior Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia
Driving Analytics =
“A $70 device will tell you how
efficiently you’re driving, and
can even call 911 for help in the event of an
accident.” Another of the “internet of things”
devices, plus data mining potential. If you're
looking for a startup idea, connect the net to
things (witness glasses, cars, thermostats, ...)

news/512211/gad: 1y driving/

Review
Shared Memory Multiprocessor (SMP)

* Q1 - Single address space shared by all
processors/cores

¢ Q2 — Processors coordinate/communicate
through shared variables in memory (via loads
and stores)
— Use of shared data must be coordinated via

synchronization primitives (locks) that allow
access to data to only one processor at a time

¢ All multicore computers today are SMP

w csec 120 & 013 © ucs|

3/13/13

Review: Parallel Processing:
Multiprocessor Systems (MIMD)

* MP - A computer system with at least 2 processors:

Processor Processor Processor

‘ I ction Network ‘

[wemoy | [o |

* Q1 - How do they share data?
* Q2 - How do they coordinate?

* Q3 - How many processors can be supported?

csec 120 013 © Ucs)

CS10 Review : Higher Order Functions
with “CS10: Sum Reduction”

« Useful HOFs (you can build your own!)

— map Reporter over List Oooooo)
« Report a new list, every element E of List becoming | | | | | |
Reporter (E) (VAVAViVAVAVWAN)
— keep items such that Predicate from List Oooooo)
+ Report a new list, keeping only elements £ of List if | OO v
Predicate(E) talaleiate
— combine with Reporter over List

]

* Combine all the elements of List with e
Reporter (E) 5'_/

+ This is also known as “reduce” -~

combine with ' items of m

[¢74 —

Is this a good model

when you have multiple
cores to help you? —

combine with [Reporter over |[List
a

e
iy

(e i) d

Gt (Fl?n:i

CS61C Example: Sum Reduction

Sum 100,000 numbers on 100 processor SMP
— Each processor has ID: 0 < Pn <99
— Partition 1000 numbers per processor

— Initial summation on each processor [Phase I]

sum[Pn] = 0;

for (i = 1000*Pn; i < 1000*(Pn+1); i =i + 1)
sum[Pn] = sum[Pn] + A[i];

* Now need to add these partial sums [Phase Il]
— Reduction: divide and conquer
— Half the processors add pairs, then quarter, ...
— Need to synchronize between reduction steps

w csec 120

013 © Ucs)

Example: Sum Reduction

Second Phase:
After each processor has
computed its “local” sum

This code runs
simultaneously on each core

half = 100;
repeat
synch();
/* Proc 0 sums extra element if there is one */
if (half32 != O &% Pn == 0)

sum[0] = sum[O] + sum[half-1];
half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

ﬂ csec 120 & 013 © ucs|

3/13/13

An Example with 10 Processors

sum[PO] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum([P7] sum[P8] sum[P9]

Q csec 120 013 © Ucs)

An Example with 10 Processors

sum[PO] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

half =10

half=5

half =2

half=1

ﬂ csec 120 & 013 © ucs|

Memory Model for Multi-threading

v All threads have access to the

same, globally shared, memory|
v Data can be shared or private

v Shared data is accessible by all
threads

v Private data can only be
accessed by the thread that
owns it

v Data transfer is transparent to
the programmer

v Synchronization takes place,
but it is mostly implicit

2 7CAN BE SPECIFIED IN A LANGUAGE WITH MIMD SUPPORT — SUCH AS OPENMIP

csec 120 013 © Ucs)

half = 100; .

repeat P€Er Instruction
synch();
/* Proc 0 sums extra element if there is one */
if (half%2 != 0 && Pn == 0)

sum[0] = sum[O0] + sum[half-1];
half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

What goes in Shared? What goes in Private?

(a) PRIVATE PRIVATE PRIVATE
(b) PRIVATE PRIVATE SHARED
(c) PRIVATE SHARED PRIVATE
(d) SHARED SHARED PRIVATE

Q (e) SHARED SHARED SHARED
css1c 120 s 013 © ucs|

Three Key Questions about
Multiprocessors

* Q3 — How many processors can be supported?

* Key bottleneck in an SMP is the memory
system

* Caches can effectively increase memory
bandwidth/open the bottleneck

* But what happens to the memory being
actively shared among the processors through
the caches?

Q csec 120 013 © Ucs)

Shared Memory and Caches

* What if?
— Processors 1 and 2 read Memory[1000] (value 20)

Processor 0

i

‘ Cache ‘ ‘1000 e ‘ ‘ 1000 e ‘

Processor1 1000 Processor2 1000

\ t ion Network \

[wen2ed [oo]

3/13/13

w csec 120 13 © ucs|

Shared Memory and Caches

* What if?
— Processors 1 and 2 read Memory[1000]
— Processor 0 writes Memory[1000] with 40

Processor 0
Write

1000 | Processor0 Processorl Processor2

‘ 1000 40 ‘ ‘ 1000 20 ‘ ‘ 1000 20 ‘ Invalidates
Other Copies
I ion Network | (Easy! Turn
i Valid bit off)
‘ 1000 40 ‘ ‘ /o ‘

Q csec 120 013 © Ucs)

Keeping Multiple Caches Coherent

* Architect’s job: shared memory = keep cache
values coherent

* |dea: When any processor has cache miss or
writes, notify other processors via
interconnection network
— If only reading, many processors can have copies
— If a processor writes, invalidate all other copies

* Shared written result can “ping-pong”
between caches

csec 120 13 © ucs|

How Does HW Keep S Coherent?

Each cache tracks state of each block in cache:
Shared: up-to-date data, not allowed to write
other caches may have a copy
copy in memory is also up-to-date
Modified: up-to-date, changed (dirty), OK to write
no other cache has a copy,
copy in memory is out-of-date
- must respond to read request
Invalid: Not really in the cache

csec 120 013 © Ucs)

2 Optional Performance Optimizations
of Cache Coherency via new States

Exclusive: up-to-date data, OK to write (change to modified)
no other cache has a copy,
copy in memory up-to-date
— Avoids writing to memory if block replaced
— Supplies data on read instead of going to memory

Owner: up-to-date data, OK to write (if invalidate shared
copies first then change to modified)

other caches may have a copy (they must
be in Shared state)

copy in memory not up-to-date
— So, owner must supply data on read instead of going to memory

http://youtu.be/Wd8qgzqfPfdM

w csec 120 13 © ucs|

Common Cache Coherency Protocol:
MOESI (snoopy protocol)

* Each block in each cache is in one of the
following states:

Modified (in cache) M L

M X X/
Shared (in cache) S| X |
Invalid (not in cache) 1|V v |

Compatability Matrix: Allowed

states for a given cache block
w in any pair of caches
cseaciz0 013 © ucs)

Common Cache Coherency Protocol:
MOESI (snoopy protocol)

* Each block in each cache is in one of the
following states:

Modified (in cache) M{OJE]S I

' M X[x| XXy
Owned (in cache) ol X X Xvlv
Exclusive (in cache) Elxxixlxls
Shared (in cache) S| X|/|X |/
Invalid (not in cache) AR AR AR AN

Compatability Matrix: Allowed

3/13/13

states for a given cache block
w in any pair of caches
cseici20 13 0 uce|

Cache Coherency (MOESI protocol AQRE
\ Probe Write Hit / \‘
\: Exclusive |
Read Miss Exclusive \‘ /
‘@9&\7,\/

i
—
& -_— Mory
S o) N
« | Modified |
| shared e ™

e re® W T Reaa Hie
=, pro! — write Hit

S0 | ownea | %
Read Hit. /o
Probe Read-Hit N (;

|
May consider Owned as ~= -
oy Read Filt

special case of Shared) Probe Read Hit
robe Read Hil

u October 14, 2008

@ csec 120 013 © Ucs)

«"Read” and “Write” are by this core.

«"Probe Read” and “Probe Write” are

reads and writes by others, that must
probe this core’s caches

Cache Coherency and Block Size

* Suppose block size is 32 bytes

* Suppose Processor 0 reading and writing
variable X, Processor 1 reading and writing
variable Y

* Suppose in X location 4000, Y in 4012
* What will happen?

* Effect called false sharing

* How can you prevent it?

w csec 120 13 © ucs|

Dan’s Laptop? sysctl hw

hw.cpufrequency_min: 3060000000

hw.byteorder: 1234 hw.cpufrequency_max: 3060000000
hw.cachelinesize: 64

hw.memsize: 8589934592 hw.Iicachesize: 32768

hw.activecpu: 2 hw.I1dcachesize: 32768
hw.physicalcpu: 2 hw.I2cachesize: 6291456

hw.ncpu: 2

hw.physicalcpu_max: 2 Be careful! hw.tbfrequency: 1000000000
hw.logicalcpu: 2 You can *change* hw.packages: 1
hw.logicalcpu_max: 2 some of these hw.optional.floatingpoint: 1

hw.cputype: 7 values with hw.optional.mmx: 1
hw.cpusubtype: 4 the wrong flags! :agm:::z:zll
hw.cpu64bi.t7capable: 1 hw:thiona\:sseS; 1
hw.cpufamily: 2028621756 hw.optional.supplementalsse3: 1
hw.cacheconfig: 2120000000 hw.optional.ssed_1: 1
hw.cachesize: 8321499136 32768 6291456 0000000 hw.optional.sse4_2: 0
hw.pagesize: 4096 hw.optional .x86_64: 1
hw.busfrequency: 1064000000 hw.optional.aes: 0
hw.busfrequency_min: 1064000000 hw.optional.avx1_0:0

hw.busfrequency_max: 1064000000 hwnptiona\.rdrand: 0
hw.optional.f16c: 0

hw.optional.enfstrg: 0

gpufrequency: 3060000000
hw.machine = x86_64
cserci0 013 © ucs)

And In Conclusion, ...

* Sequential software is slow software
— SIMD and MIMD only path to higher performance

¢ Multiprocessor (Multicore) uses Shared Memory
(single address space)

* Cache coherency implements shared memory
even with multiple copies in multiple caches
— False sharing a concern

* Next Time: OpenMP as simple parallel extension
toC

w csec 120 13 © ucs|

