CS 61C: Great Ideas in
Computer Architecture

Synchronization,
OpenMP

Guest Lecturer: Justin Hsia

Review of Last Lecture

* Multiprocessor systems uses shared memory
(single address space)

¢ Cache coherence implements shared memory
even with multiple copies in multiple caches

— Track state of blocks relative to other caches
(e.g. MOESI protocol)

— False sharing a concern

Great Idea #4: Parallelism
Software I Hardware B e =

Parallel Requests
Assigned to computer
e.g. search “Garcia”

Warehouse
Scale
Computer

teverage

Parallel Threads p, . d: o

Assigned to core Achievie High g e
e.g. lookup, ads Performance @ ______ Computer “~-._
 Parallel Instructions e ? Core | .. | Core
|e—— ———
> 1instruction @ one time it l\‘(lemory
e.g. 5 pipelined instructions - Inpu‘\/Output
* Parallel Data .-~ Core
> 1 data item @ one time |nstru‘c”ti?{; Unit(s) Func_tional
e.g. add of 4 pairs of words -] Unit(s)
* Hardware descriptions e T o e wic|
All gates functioning in ‘ Cache Memory A

parallel at same time ~

Agenda

¢ Synchronization - A Crash Course
¢ Administrivia

OpenMP Introduction
* OpenMP Directives

— Workshare

— Synchronization

Data Races and Synchronization

¢ Two memory accesses form a data race if
different threads access the same location, and at
least one is a write, and they occur one after
another
— Means that the result of a program can vary
depending on chance (which thread ran first?)
— Avoid data races by synchronizing writing and reading
to get deterministic behavior
¢ Synchronization done by user-level routines that
rely on hardware synchronization instructions

3/15/2013 Spring 2013 -- Lecture #22

Analogy: Buying Milk

¢ Your fridge has no milk. You and your
roommate will return from classes at some
point and check the fridge

* Whoever gets home first will check the fridge,
go and buy milk, and return

¢ What if the other person gets back while the
first person is buying milk?

— You’ve just bought twice as much milk as you
need!

Lock Synchronization (1/2)

¢ Use a “Lock” to grant access to a region
(critical section) so that only one thread can

operate at a time

— Need all processors to be able to access the lock,
so use a location in shared memory as the lock

¢ Processors read lock and either wait (if locked)
or set lock and go into critical section
— 0 means lock is free / open / unlocked / lock off
— 1 means lock is set / closed / locked / lock on

Lock Synchronization (2/2)

¢ Pseudocode:

Can loop/idle here
Check Iock:_) if locked

Set the lock
Critical section

(e.g. change shared variables)
Unset the lock

Possible Lock Implementation

¢ Lock (a.k.a. busy wait)
Get_lock:
addiu $t1,%$zero,1
Loop: Iw $t0,0($s0)
bne $t0,$zero,Loop
Lock: sw $t1,0($s0)

¢ Unlock
Unlock:
sw $zero,0($s0)

¢ Any problems with this?

$s0 -> addr of lock
tl = Locked value

load lock

loop if locked

Unlocked, so lock

Possible Lock Problem

e Thread 1
addiu $tl1,%$zero,1
Loop: Iw $t0,0($s0)

e Thread 2

addiu $tl1,%$zero,1
Loop: Iw $t0,0($s0)

bne $t0,%$zero,Loop

bne $t0,%zero,Loop
Lock: sw $t1,0($s0)

Lock: sw $t1,0($s0)
Time
Both threads think they have set the lock!
Exclusive access not guaranteed!

Hardware Synchronization

¢ Hardware support required to prevent an
interloper (another thread) from changing the

value

— Atomic read/write memory operation
— No other access to the location allowed between

the read and write

¢ How best to implement in software?
—Single instr? Atomic swap of register <> memory
— Pair of instr? One for read, one for write

3/15/2013 Spring 2013 -- Lecture #22

Synchronization in MIPS

e Load linked: 1l rt,off(rs)
e Store conditional: sc rt,ofF(rs)

— Returns 1 (success) if location has not changed
since the 11

— Returns 0 (failure) if location has changed
* Note that sc clobbers the register value being
stored (rt)!

— Need to have a copy elsewhere if you plan on
repeating on failure or using value later

3/15/2013 Spring 2013 - Lecture #22

Synchronization in MIPS Example

e Atomic swap (to test/set lock variable)

Exchange contents of register and memory:
Ss4 <> Mem(Ss1)

try: add $tO,$zero,$s4 #copy value
I $t1,0($sl) #load linked
sc $t0,0($sl1) #store conditional
beq $t0,%zero,try #loop if sc fails
add $s4,%zero,$tl #load value in $s4

sc would fail if another threads executes sc here

Test-and-Set

In a single atomic operation: l E

— Test to see if a memory location is set
(containsa 1)

— Set it (to 1) if it isn’t (it contained a zero —
when tested)

— Otherwise indicate that the Set failed,\/ ‘
so the program can try again

— While accessing, no other instruction
can modify the memory location, \
including other Test-and-Set instructions
¢ Useful for implementing lock
operations Unlack semaphore

5/2013 Spring 2013 - Lecture #22

Test-and-Set in MIPS

¢ Example: MIPS sequence for
implementing a T&S at ($s1)
Try: addiu $t0,$%$zero,1 /
11

$t1,0($s1)
bne $tl1,%$zero,Try
sc $t0,0($s1)
beq $t0,$zero,try

Locked: —

critical section

Unlock:
sw $zero,0($sl) -—

Question: Consider the following code when
executed concurrently by two threads.

What possible values can result in *($s0)?

*($s0) = 100
Iw $t0,0($s0)
addi $t0,$t0,1
sw $t0,0($s0)

E |
O 100, 101, or 102
(]

0 102

Agenda

e Administrivia
¢ OpenMP Introduction
* OpenMP Directives

— Workshare

— Synchronization

3/15/2013 Spring 2013 -- Lecture #22 1

Administrivia

e Midterm re-grade requests due Tuesday
(3/19)
¢ Project 2: MapReduce
— Work in groups of two!
— Part 1: Due March 17 (this Sunday)
— Part 2: Due March 24 (part of Spring Break)
¢ Homework 4 will be posted before Spring
Break
— If you want to get a head start

13 - Lecture #22

Agenda

e OpenMP Introduction

* OpenMP Directives
— Workshare
— Synchronization

What is OpenMP?

e APl used for multi-threaded, shared memory
parallelism Sureamey o _OpenMP

CIC++ Syntax ——————

— Compiler Directives

Do el Open MPAP! Syt
Directives

— Runtime Library Routines
— Environment Variables

* Portable

* Standardized

¢ Resources: http://www.openmp.org/
and http://computing.linl.gov/tutorials/openMP/

3/15/2013

Spring 2013 - Lecture #22

OpenMP Specification

OpenMP language
extensions

parallel control
Structures

work sharing

data
environment

synchronization

runtime
functions, env.
variables

governs flow of
conrol in the
program

parallel drecive

distributes work
among threads

do/parallel do
and

section direciives

scopes
vaniabies

shared and
private

clauses

coordinates thread
execution

critical and
atomic directives
barrier grecive

ruriime emironment

omp_set_nun_threads ()
omp_get_thread_nun()
OMP_NUM_THREADS
OMP_SCHEDULE

Shared Memory Model with Explicit
Thread-based Parallelism

e Multiple threads in a shared memory
environment, explicit programming model with
full programmer control over parallelization

* Pros:

— Takes advantage of shared memory, programmer need
not worry (that much) about data placement

— Compiler directives are simple and easy to use
— Legacy serial code does not need to be rewritten

e Cons:

— Code can only be run in shared memory environments
— Compiler must support OpenMP (e.g. gcc 4.2)

OpenMP in CS61C

¢ OpenMP is built on top of C, so you don’t have to
learn a whole new programming language
— Make sure to add #include <omp.h>
— Compile with flag: gcc -fopenmp
— Mostly just a few lines of code to learn

¢ You will NOT become experts at OpenMP
— Use slides as reference, will learn to use in lab

¢ Key ideas:
— Shared vs. Private variables
— OpenMP directives for parallelization, work sharing,

3/15/201:

synchronization

Spring 2013 -- Lecture #22

OpenMP Programming Model

Fork - Join Model:

J J

o o

master I I
thread N N
{ parallel region} { parallel region }

OpenMP programs begin as single process (master thread)

and executes sequentially until the first parallel region

construct is encountered

— FORK: Master thread then creates a team of parallel threads

— Statements in program that are enclosed by the parallel region
construct are executed in parallel among the various threads

— JOIN: When the team threads complete the statements in the
parallel region construct, they synchronize and terminate,
leaving only the master thread

Spring 2013

OpenMP Extends C with Pragmas

* Pragmas are a preprocessor mechanism C
provides for language extensions

e Commonly implemented pragmas:
structure packing, symbol aliasing, floating
point exception modes (not covered in 61C)

¢ Good mechanism for OpenMP because
compilers that don't recognize a pragma are
supposed to ignore them

— Runs on sequential computer even with
embedded pragmas

parallel Pragma and Scope

¢ Basic OpenMP construct for parallelization:
#pragma omp parallel

{

This is annoying, but curly brace MUST go on separate
/* code goes here */ ine from toragms
b

— Each thread runs a copy of code within the block

— Thread scheduling is non-deterministic
e OpenMP default is shared variables

— To make private, need to declare with pragma:
#pragma omp parallel private (x)

5/2013

Thread Creation

¢ How many threads will OpenMP create?
¢ Defined by OMP_NUM_THREADS
environment variable (or code procedure call)
— Set this variable to the maximum number of
threads you want OpenMP to use
— Usually equals the number of cores in the
underlying hardware on which the program is run

OMP_NUM_THREADS

¢ OpenMP intrinsic to set number of threads:
omp_set_num_threads(x);

¢ OpenMP intrinsic to get number of threads:
num_th = omp_get _num_threads();

e OpenMP intrinsic to get Thread ID number:
th_ID = omp_get _thread num();

Parallel Hello World

#include <stdio.h>
#include <omp.h>
int main Q) {

int nthreads, tid;

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num(); /* get thread id */
printf("'Hello World from thread = %d\n", tid);
/* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf('Number of threads = %d\n", nthreads);

} /* All threads join master and terminate */

3

3/15/2013 Spring 2013 -- Lecture #22

Agenda

* OpenMP Directives
— Workshare
— Synchronization

OpenMP Directives (Work-Sharing)

¢ These are defined within a parallel section

I master thread I master thread I master thread
ot || | [
JOIN

l master thread l master thread I master thread
Shares iterations of a Each section is executed Serializes the execution
loop across the threads by a separate thread of a thread

5/2013 Spring 2013 -- Lecture #22

Paral lel Statement Shorthand

#pragma omp parallel o
This is the only

{ / directive in the
#pragma omp for parallel section
for(i=0;i<len;i++) { .. }

}

can be shortened to:

#pragma omp parallel for
for(i=0;i<len;i++) { .. }

¢ Also works for sections

Building Block: for loop

for (i=0; i<max; i++) zero[i] = O;

¢ Break for loop into chunks, and allocate each to a
separate thread
— e.g. if max = 100 with 2 threads:
assign 0-49 to thread 0, and 50-99 to thread 1
* Must have relatively simple “shape” for an OpenMP-
aware compiler to be able to parallelize it
— Necessary for the run-time system to be able to determine
how many of the loop iterations to assign to each thread

¢ No premature exits from the loop allowed <— L" g?t”_e'a"
X _ on’t jump
— i.e. No break, return, exit, goto statements outside of any
pragma block
3/15/2013 Spring 2013 -- Lecture #22 3

Parallel for pragma

#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = O;

¢ Master thread creates additional threads,
each with a separate execution context master
* All variables declared outside for loop are
shared by default, except for loop index
which is private per thread (Why?)
¢ Implicit synchronization at end of for loop
¢ Divide index regions sequentially per thread
— Thread 0 gets 0, 1, ..., (max/n)-1;
— Thread 1 gets max/n, max/n+1, ..., 2*(max/n)-1
— Why?

5/2013 Spring 2013

I master:

OpenMP Timing

* Elapsed wall clock time:
double omp_get wtime(void);
— Returns elapsed wall clock time in seconds

— Time is measured per thread, no guarantee can be
made that two distinct threads measure the same
time

— Time is measured from “some time in the past,” so
subtract results of two calls to omp_get_wtime
to get elapsed time

3/15/2013 Spring 2013 -- Lecture #22

Matrix Multiply in OpenMP

start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Mdim; i++){«————— Outer loop spread

for (J=0; j<Ndim; j++){ across N threads;
tmp = 0.0; inner loops inside a
for(k=0; k<Pdim; k++){ single thread

/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += *(A+(i*Pdim+k)) * *(B+(k*Ndim+j));
¥
*(C+(i*Ndim+j)) = tmp;
3
}
run_time = omp_get_wtime() - start_time;

13 - Lecture #22

Notes on Matrix Multiply Example

¢ More performance optimizations available:

— Higher compiler optimization (-02, -03) to reduce
number of instructions executed

— Cache blocking to improve memory performance

— Using SIMD SSE instructions to raise floating point
computation rate (DLP)

OpenMP Directives (Synchronization)

* These are defined within a paral lel section
¢ master
— Code block executed only by the master thread
(all other threads skip)
e critical
— Code block executed by only one thread at a time
e atomic
— Specific memory location must be updated atomically
(like a mini-critical section for writing to memory)
— Applies to single statement, not code block

5/2013 ring 2013 -- Lecture #22

OpenMP Reduction

¢ Reduction specifies that one or more private
variables are the subject of a reduction
operation at end of parallel region
— Clause reduction(operation:var)
— Operation: Operator to perform on the variables
at the end of the parallel region
— Var: One or more variables on which to perform
scalar reduction
#pragma omp for reduction(+:nSum)
for (i = START ; i <= END ; i++)
nSum += i;

3/15/2013 Spring 2013 - Lecture #22

Summary

¢ Data races lead to subtle parallel bugs
¢ Synchronization via hardware primitives:

— MIPS does it with Load Linked + Store Conditional
* OpenMP as simple parallel extension to C

— During parallel fork, be aware of which variables
should be shared vs. private among threads

— Work-sharing accomplished with for/sections

— Synchronization accomplished with
critical/atomic/reduction

BONUS SLIDES

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should
be easily readable and the material will be
touched upon in the following lecture.

Agenda

e Bonus: Common OpenMP Pitfalls

OpenMP Pitfall #1: Data Dependencies

¢ Consider the following code:
a[0] = 1;
for(i=1; i<5000; i++)
a[i] = 1 + a[i-1];
¢ There are dependencies between loop
iterations!

— Splitting this loop between threads does not
guarantee in-order execution

— Out of order loop execution will result in
undefined behavior (i.e. likely wrong result)

Open MP Pitfall #2: Sharing Issues

¢ Consider the following loop:
#pragma omp parallel for
for(i=0; i<n; i++){

temp = 2.0*a[i];
a[i] = temp;
b[i] = c[i]/temp;

}
e temp is a shared variable!

#pragma omp parallel for private(temp)
for(i=0; i<n; i++){

temp = 2.0*a[i];
a[i] = temp;
= c[i]/temp;

b[i]

OpenMP Pitfall #3: Updating Shared
Variables Simultaneously

¢ Now consider a global sum:
for(i=0; i<n; i++)
sum = sum + a[i];

¢ This can be done by surrounding the summation by a
critical/atomic section or reduction clause:

#pragma omp parallel for reduction(+:sum)
{
for(i=0; i<n; i++)
sum = sum + a[i];
3

— Compiler can generate highly efficient code for reduction

3/15/2 ing 2013 -- Lecture #2: 4

OpenMP Pitfall #4: Parallel Overhead

¢ Spawning and releasing threads results in
significant overhead
¢ Better to have fewer but larger parallel regions

— Parallelize over the largest loop that you can (even
though it will involve more work to declare all of
the private variables and eliminate dependencies)

OpenMP Pitfall #4: Parallel Overhead

start_time = omp_get_wtime(); Too much overhead in thread
£ T_O_ i<Ndi - _+: ’ generation to have this statement
O;OI(’IEjLOT j<l\IAE;m! j?rf){ run this frequently.
tmp = C’) 0: ’ Poor choice of loop to parallelize.
#pragma omp parallel for reduction(+:tmp)
for(k=0; k<Pdim; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += +(i im+ + im+j));
*(A+(i*Ndim+k)) * *(B+(k*Pdim+j
3
*(C+(i*Ndim+j)) = tmp;
¥
¥
run_time = omp_get_wtime() - start_time;

3/15/2013 Spring 2013 -- Lecture #22

