Today		
- Data Multiplexors - Arithmetic and Logic Unit - Adder/Subtractor		

How do we build a 1-bit-wide mux?

$\begin{array}{l}\text { Arithmetic and Logic Unit }\end{array}$
$\begin{array}{l}\text { - Most processors contain a special } \\ \text { logic block called "Arithmetic and } \\ \text { Logic Unit" (ALU) }\end{array}$
- We'll show you an easy one that does
ADD, SUB, bitwise AND, bitwise OR
A

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter - One-bit adder LSB...

$$
\begin{array}{rlll|l|}
& \mathrm{a}_{3} & \mathrm{a}_{2} & \mathrm{a}_{1} & \mathrm{a}_{0} \\
+\mathrm{b}_{3} & \mathrm{~b}_{2} & \mathrm{~b}_{1} & \mathrm{~b}_{0} \\
\hline \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0} \\
\end{array}
$$

$s_{0}=$
$c_{1}=$

Cal

What about overflow?

- Consider a 2-bit signed \# \& overflow:
$10=-2$
$11=-1$
$00=0$
$01=1$
- Overflows when...

$\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow! - $C_{\text {out, }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!
overflow $=c_{n}$ XOR c_{n-1}

Adder/Subtracter - One-bit adder (2/2)...

$s_{i}=\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right)$
$c_{i+1}=\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right)=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}$
Cel
Garcia, Spring 2013 @UCB

What about overflow?

- Consider a 2-bit signed \# \& overflow:
- $10=-2+-2$ or -1
-11 = -1 + -2 only
-00 = 0 NOTHING!
-01 = $1+1$ only
- Highest adder

- $\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\text {in }}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {out }}$
- No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\text {in }} \Rightarrow$ NO overflow!

What $\cdot \mathrm{C}_{\mathrm{in}}$, and $\mathrm{C}_{\text {out }} \Rightarrow \mathrm{NO}$ overflow!
op? $\cdot \mathrm{C}_{\text {in }}$, but no $\mathrm{C}_{\text {out }} \Rightarrow A, B$ both >0, overflow!
$\cdot C_{\text {out }}$, but no $C_{i n} \Rightarrow A, B$ both <0, overflow!
Cal
Garcia, Spring 2013@ucB

