

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

R

CS61C L2

Adder/Subtracter Design -- how? Truth-table, then determine canonical form, then minimize and implement as we've seen before Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Peer Instruction

1) Truth table for mux with 4-bits of signals has 24 rows

12 a) FF b) FT c) TF d) TT

2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

"And In conclusion..."

- Use muxes to select among input
 - ·S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
 - · XOR serves as conditional inverter

