inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 26 - Combinational Logic Blocks

Senior Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Very fast 3D Micro Printer \Rightarrow

A new company called Nanoscribe

has developed a fabrication device that can create structures like the one at the right at the micro scale in minutes (instead of hours). The idea is that "tiny, ultrashort pulses from a near-infrared laser on a lightsensitive material solidifies on spot. Mirrors not motors

www.technologyreview.com/news/511856/micro-3-d-printer-creates-CS61C L26 Combinational Logic Blocks (1) tiny-structures-in-seconds/Garcia, Spring 2013 © UCB

Review

• Use this table and techniques we learned to transform from 1 to another

CS61C L26 Combinational Logic Blocks (2)

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

N instances of 1-bit-wide mux

How do we build a 1-bit-wide mux?

4-to-1 Multiplexor?

 $e = \overline{s_1}\overline{s_0}a + \overline{s_1}s_0b + s_1\overline{s_0}c + s_1s_0d$

CS61C L26 Combinational Logic Blocks (7)

Is there any other way to do it?

CS61C L26 Combinational Logic Blocks (8)

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter – One-bit adder LSB...

	a_3	a_2	a_1	a_0
+	b_3	b_2	b_1	b_0
	S 3	s_2	s_1	s ₀

 $s_0 = c_1 = c_1 = c_1$

Adder/Subtracter – One-bit adder (1/2)...

						a_i	\mathbf{b}_i	\mathbf{c}_i	Si	c_{i+1}
						0	0	0	0	0
	0	0				0	0	1	1	0
		a_2				0	1	0	1	0
+	b_3	b_2	b_1	b_0		0	1	1	0	1
	S 3	s ₂	s ₁	S∩	-		0			
	0	2	1	0		1	0	1	0	1
							1			
						1	1	1	1	1

$$s_i =$$

$$c_{i+1} =$$

Adder/Subtracter – One-bit adder (2/2)...

$$\begin{aligned} s_i &= \operatorname{XOR}(a_i, b_i, c_i) \\ c_{i+1} &= \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i \end{aligned}$$

N 1-bit adders \Rightarrow 1 N-bit adder

What about overflow? Overflow = c_n ?

What about overflow?Consider a 2-bit signed # & overflow:

- •10 = -2 + -2 or -1
- •11 = -1 + -2 only
- $\bullet 00 = 0 \text{ NOTHING!}$
- •01 = 1 + 1 only
- $c_{2} = c_{1} = c_{1}$

- Highest adder
 - $C_1 = Carry-in = C_{in}$, $C_2 = Carry-out = C_{out}$
 - No C_{out} or $C_{in} \Rightarrow$ NO overflow!

What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!

- C_{in} , but no $C_{out} \Rightarrow A, B$ both > 0, overflow!
 - C_{out} , but no $C_{in} \Rightarrow A, B$ both < 0, overflow!

op?

- Consider a 2-bit signed # & overflow:
 - $10 = -2 \\ 11 = -1 \\ 00 = 0 \\ 01 = 1$

Overflows when...

• C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow! • C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

overflow = $c_n \operatorname{XOR} c_{n-1}$

Extremely Clever Subtractor

CS61C L26 Combinational Logic Blocks (18)

1) Truth table for mux with 4-bits of signals has 2⁴ rows

2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

Peer Instruction Answer

- 1) Truth table for mux with 4-bits of signals controls 16 inputs, for a total of 20 inputs, so truth table is 2²⁰ rows...FALSE
- 2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl ... TRUE
- 1) Truth table for mux with 4-bits of signals is 2⁴ rows long
- 2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

12

नन

FT

TF

 \mathbf{TT}

С

d)

"And In conclusion..."

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

