CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 30: Pipeline Parallelism 1

Instructor:
Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/sp13

Boolean Exprs for Controller

Instruction<31:0>

& Op 0-5 are really Instruction bits 26-31

Inst

92>

Memory o
o 2 Func 0-5 are really Instruction bits 0-5
Op Fun
rtype = ~Ops; ®* ~Op, ®* ~Op; ®* ~Op, * ~Op; * ~OP,,
ori = ~Ops * ~Opy * ©Op3* OpP, * ~Op; * Op,
1w = Ops * ~Op, * ~Op;3 * ~Op, * Op; * Op,
sSw = Ops * ~Op, * Op3*® ~Op,* OpP;* Op,
beq = ~ops;* ~op, * ~Op; * Op, * ~Op; * ~Op,
jump = ~op; * ~Op, * ~Op; * ~Op, * Op; * ~Op,

add = rtype ¢ func, * ~func, * ~func, * ~func, * ~func, * ~func,
sub = rtype ¢ func, * ~func, * ~func, * ~func, * func, * ~func,

4913 How do we implement this in gates? s

Boolean Exprs for Controller

RegDst = add + sub

ALUSrc = ori + lw + sw
MemtoReg = 1lw

RegWrite = add + sub + ori + 1lw
MemWrite = sw

nPCsel = beq

Jump = jump

ExtOp = lw + sw

ALUctr[0] = sub + beqg
ALUctr[1l] = ori

(assume ALUctr is 00 ADD, 01 SUB, 10 OR)

How do we implement this in gates?

4/9/13 Fall 2011 - Lecture #30

Controller Implementation

opcode func

|— RegDst
add |— ALusre
sub — MemtoReg
ori > RegWrite

“AND” logic [w] “OR” logic [MemWrite

sw [—> nPCsel

— Jump
beq |— ExtOp
jump — ALUctr[0]

— ALuctr[1]

4/9/13 Fall 2011 - Lecture #30 1

Call home, we’ve made HW/SW contact!

-

High Level Language
Program (e.g., C)

Compiler
Assembly Language
Program (e.g.,MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

|

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description {
(Circuit Schematic Diagrams, =

Review: Single-cycle Processor

* Five steps to design a processor:

1. Analyze instruction set > Processor
datapath requirements ol Input

2. Select set of datapath

components & establish
clock methodology

Memory
3. Assemble datapath meeting
the requirements
4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.
5. Assemble the control logic
* Formulate Logic Equations
* Design Circuits

4/9/13

Single Cycle Performance
* Assume time for actions are
— 100ps for register read or write; 200ps for other events

¢ Clock rate is?

Single Cycle Performance
¢ Assume time for actions are
— 100ps for register read or write; 200ps for other events

¢ Clock rate is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
Iw 200ps 100 ps 200ps 200ps 100 ps

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

Iw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

» What can we do to improve clock rate?
* Will this improve performance as well?
Want increased clock rate to mean faster programs

» What can we do to improve clock rate?

« Will this improve performance as well?
Want increased clock rate to mean faster programs

Gotta Do Laundry
* Ann, Brian, Cathy, Dave

each have one load of clothes to 565&

wash, dry, fold, and put away
— Washer takes 30 minutes

— Dryer takes 30 minutes

— “Folder” takes 30 minutes

— “Stasher” takes 30 minutes to put

clothes into drawers K

Sequential Laundry
GIPM 7 8 9 10 11 12 1 2AM

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM

B o = == A :
T, 30303030303030 Time
al S
S bnd
k| O
|8 A
jafo] 5 A
d
e
r * Pipelined laundry takes

3.5 hours for 4 loads!

T %'ﬁ'so'30'%'@'30'30'%'5'30'30'%'5‘30 30
=~ . ime
|lo@g 4 "
«|B A 85 4
0|2 A
r
d
e
r * Sequential laundry takes
8 hours for 4 loads
Pipelining Lessons (1/2)
6PM 7 8 9 * Pipelining doesn’t help latency
- f T~ of single task, it helps
D o = e throughput of entire workload
a 3030 30 30 30 30 30 B .
s — . * Multiple tasks operating
K 5 E‘ K simultaneously using different
& g_‘ 3 A resour?es
——‘ 2 * Potential speedup = Number
6 =] . pipe stages
C,) El * Time to “fill” pipeline and time

to “drain” it reduces speedup:
2.3X v. 4X in this example

o Q=0

4/9/13

Pipelining Lessons (2/2)

6 P.M 7 8 9 * Suppose new Washer

Steps in Executing MIPS
1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:
Meme-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

f Time takes 20 minutes, new
T, — ===]
a| 303030 303030 30 Stasher takes 20
sI&3 i k mlnutc'es. HO\A{ much
k =", A faster is pipeline?
o S = . A * Pipeline rate limited by
r &) ke slowest pipeline stage
a O =l A * Unbalanced lengths of
€ pipe stages reduces
r speedup
Single Cycle Datapath
d | 3 J
c I [] —
(&) S ®
a S S |Irs) >
S5 [y ¢ g2
g8 -
[imm
1. Instruction 2. Decode/ 5. Write
Fetch Register Reads' Execute 4. Memory Back

Pipeline registers

d IQ
o SEd 2 M >
o G2 | 2 » @5 [
gs] ® 55
28 [2l N g
4 im n| L A
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

* Need registers between stages
—To hold information produced in previous cycle

4/9/13

More Detailed Pipeline

B H

IF for Load, Store, ...

i

ID for Load, Store, ...

Instruction decode

EX for Load

xen

MEM for Load

WB for Load — Oops!

Corrected Datapath for Load

So, in conclusion
* You now know how to implement the control
logic for the single-cycle CPU.
— (actually, you already knew it!)
* Pipelining improves performance by increasing
instruction throughput: exploits ILP
— Executes multiple instructions in parallel
— Each instruction has the same latency
* Next: hazards in pipelining:
— Structure, data, control

4/9/13

