CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 32: Pipeline Parallelism 3

Instructor: Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/sp13

CS61C in the News
InformationWeek

THE BUSINESS VALUE OF TECHNOLOGY

IT's Next Hot Job: Hadoop Guru

JPMorgan Chase makes a case for the big data platform (and career track) of the future.

By Doug Henschen InformationWeek

November 09, 2011 10:00 AM
"Hadoop's a big deal," said [Berkeley
EECS Alum] Cloudera CEO Mike Olson.
"It's not just a Web thing. Companies
across a wide range of vertical markets are
generating big data and need to
understand that data in a way they never
did before."

[JP Morgan] has 150
petabytes (with a "p") of
data online, generated by
trading operations, banking
activities, credit card
transactions, and some 3.5
billion logins each year

“The good news is that Hadoop experts aren't born, they're trained.”

4/12/13 Fall 2011 -- Lecture #32

You Are Herel

Software Hardware

Parallel Requests
: Warehouse &
Assigned to computer Scale &
e.g., Search “Katz” Computer &

Harness
Parallel Threads Parallelism &

Assigned to core Achieve High
e.g., Lookup, Ads parformance

Parallel Instructions
>1 instruction @ one time

Memory /// (Cache)

. . . . 7 \
e.g., 5 pipelined instructions Input/Output Core \
Parallel Data == e 3
: : unctiona
>1 data item @ one time :jﬁj“on Unit(s) Unit(s)

e.g., Add of 4 pairs of words Lecture

Hardware descriptions

All gates functioning in
parallel at same time

mjlﬂl % +% +B//A +B/% +B

Main Memory et

v

Logic Gates
D e
1>

B E EEN

Instruction

IF/ID

P&H Figure 4.50

)

WB

.‘\'1

\ WB
Control !l M
/
/ EX
Z
ID/EX

WB

EX/MEM

MEM/WB

P&H 4.51 — Pipelined Control

=CSme
«arc

IDVEX
we Laweu
e l:csu.“a
- " WE
IFRD =
[
4
é E,ar,:r,
; 1)
egater ;;ig 3 -
Read = 2
IABtruet o regate 2 Read
mamory Write Registers =go. Adaress sam |7
‘ dae 2
eyste Date
| s mamery
Wirks
data
netructen
(12-0] 1% [gign. | 32
) axtand NerReac
nEtructon
[20-18)
nEtructen
[15=11]

Hazards

Situations that prevent starting the next logical
instruction in the next clock cycle

1. Structural hazards
— Required resource is busy (e.g., roommate studying)

2. Data hazard

— Need to wait for previous instruction to complete its
data read/write (e.g., pair of socks in different loads)

3. Control hazard

— Deciding on control action depends on previous
instruction (e.g., how much detergent based on how
clean prior load turns out)

Data Hazards
Code Scheduling to Avoid Stalls

e Reorder code to avoid use of load result in the
next instruction

e CcodeforA = B + E; C =B + F;

Tw $t1, 0($t0) Tw $t1, 0($t0)
Tw @ 4($t0) Tw

stall — a.dd $t3, $t1, @ -IW

sw $t3, 12($t0) add $t3, §
w (5t4)-8($t0) sw $t3,

o |— add $t5, $t1,(St4) add $t5, $tl,

sw $t5, 16($t0) sw $t5, 16($t0)

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

 BEQ, BNE in MIPS pipeline
e Simple solution Option 1: Stall on every

branch until have new PC value

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

e () D

- Do~ 0

Stall => 2 Bubbles/Clocks

Time (clock cycles) .

15 |:

beq

1

Instr 2 e)f/(ur

Instr 1

Vv,

0)

[15

Instr 3 I$ IReg-@m.{Reg

YInstr 4 I$ -g:Reg :t:‘],' D$ Ir Reg

Where do wge dog the compare for tghe I;ranéh?

Control Hazard: Branching

* Optimization #1.:
— Insert special branch comparator in Stage 2

— As soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a

decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
onhe no-op is needed

— Side Note: means that branches are idle in Stages
3,4and5

Question: What’s an efficient way to implement the equality comparison?

Y () D

- Dao=0

One Clock Cycle Stall

beq

Instr 1

Instr 2

Instr 3

YInstr 4

15 |;

[15 [

Time (clock cycles)

s |4

Reg

Branch comiparoitor moved to Decode stoge

Control Hazards: Branching

e Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken
— Why?

Control Hazards: Branching

* Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst
after branch

* This optimization is used with MIPS

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch

or §$8, $9, $§10 add $1, $2,S$3
add $1, $2, S3 sub $4, S5, $6
sub $4, $5, $6 beq $1, $4, Exit
' beq $1, $4, Exit or $8, $9, $10

xor $10, $1, S$11 xor $10, $1, S$11

Control Hazards: Branching

* Notes on Branch-Delay Slot

— Worst-Case Scenario: put a no-op in the branch-
delay slot

— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program

e Re-ordering instructions is common way to speed up
programs

* Compiler usually finds such an instruction 50% of time
* Jumps also have a delay slot ...

Greater Instruction-Level Parallelism (ILP)

* Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
* Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)

— E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI = 0.25, peak IPC =4

— But dependencies reduce this in practice

W
s
—_—
o
U
)
-
QO
@
=
3
o)
=
o
>
a
<
)
=
)
®
Q
S
®
—
-
c
9
=
o
=
—
9)
<
@
U
)
-5
QO
@
=
3

Multiple Issue

e Static multiple issue
— Compiler groups instructions to be issued together

— Packages them into “issue slots”
— Compiler detects and avoids hazards

 Dynamic multiple issue

— CPU examines instruction stream and chooses instructions
to issue each cycle

— Compiler can help by reordering instructions

— CPU resolves hazards using advanced techniques at
runtime

°
5
=~
D
=

Superscalar Laundry: Parallel per stage
6PM 7 8 9 10 11 12 1 2AM
I_I_I=I= >

3030 30 30 30 Time

)" #& (light clothing)
g & (dark clothing)

A (very dirty clothing)
(light clothing)
(dark clothing)
(very dirty clothing)

to match mix of parallel tasks?

x0n O —

O Q =~ O

@t Gt & GtCt &

Pipeline Depth and Issue Width

* Intel Processors over Time

Microprocessor Year | Clock Rate | Pipeline Issue Cores Power
Stages width
1486 1989 25 MHz) 1 1 sW
Pentium 1993 66 MHz) 2 1 10W
Pentium Pro 1997 200 MHz 10 3 1 29W
P4 Willamette 2001 2000 MHz 22 3 1 75W
P4 Prescott 2004 3600 MHz 31 3 1 103W
Core 2 Conroe 2006 | 2930 MHz 14 4 2 75W
Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W
Core i7 Gulftown | 2010 3460 MHz 16 4 6 130W

Chapter 4 — The Processor

Pipeline Depth and Issue Width

10000
=*&=Clock
1000
=**®Power
100 “¢=Pipeline Stages
«“@k|ssue width
10
-4/-—._-74 e
1 ! ‘ ! r T T

1989 1992 1995 1998 2001 2004 2007 2010

Static Multiple Issue

 Compiler groups instructions into “issue packets”
— Group of instructions that can be issued on a single cycle

— Determined by pipeline resources required

* Think of an issue packet as a very long instruction
— Specifies multiple concurrent operations

Scheduling Static Multiple Issue

* Compiler must remove some/all hazards
— Reorder instructions into issue packets
— No dependencies within a packet

— Possibly some dependencies between packets
» Varies between ISAs; compiler must know!

— Pad issue packet with nop if necessary

MIPS with Static Dual Issue

* Two-issue packets
— One ALU/branch instruction
— One load/store instruction
— 64-bit aligned
 ALU/branch, then load/store
* Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM wWB

n+8 ALU/branch IF ID EX MEM | WB
n+12 Load/store IF ID EX MEM | WB
n+16 ALU/branch IF ID EX MEM
n+ 20 Load/store IF ID EX MEM

Hazards in the Dual-Issue MIPS

More instructions executing in parallel
EX data hazard

— Forwarding avoided stalls with single-issue

— Now can’t use ALU result in load/store in same packet

« add , $s0, $s1
Toad $s2, 0O()

* Split into two packets, effectively a stall

Load-use hazard

— Still one cycle use latency, but now two instructions

More aggressive scheduling required

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0(%$s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: 1

2
3
4

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0(%$s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0(%$s1) 1

2
3
4

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0(%$s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0(%$s1) 1

addi $s1, $s1,-4

2
3
4

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0(%$s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0(%$s1) 1

addi $s1, $s1,-4

addu $tO0, , $s2

2
3
4

Scheduling Example

 Schedule this for dual-issue MIPS

Loop: Tw , 0(%$s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0(%$s1) 1

addi $s1, $s1,-4

2
addu $tO0, , $s2 3
bne $sl1, $zero, Loop |sw $t0, 4($sl) 4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Loop Unrolling

* Replicate loop body to expose more
parallelism

— Reduces loop-control overhead

* Use different registers per replication
— Called “register renaming”

— Avoid loop-carried “anti-dependencies”
 Store followed by a load of the same register
* Aka “name dependence”

— Reuse of a register name

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi $s1, $s1,-16 Tw , 0(%$sl) 1
Tw , 12($s1) 2
addu $tO0, , $s2 Tw , 8(%$sl) 3
addu $t1, , $s2 Tw , 4(%$sl) 4
addu $t2, , $s2 sw $t0, 16($s1) 5
addu $t3, , $s2 sw $tl, 12($sl) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4($sl) 8

* IPC=14/8=1.75

— Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

e “Superscalar” processors

e CPU decides whether toissue 0, 1, 2, ... each
cycle
— Avoiding structural and data hazards

* Avoids the need for compiler scheduling
— Though it may still help

— Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

* Allow the CPU to execute instructions out of
order to avoid stalls

— But commit result to registers in order

 Example
Tw , 20($%s2)
addu $t1, , $t2

subu $s4, $s4, $t3
sTti $t5, $s4, 20

— Can start subu while addu is waiting for lw

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?

Not all stalls are predicable
— e.g., cache misses

Can’t always schedule around branches
— Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Speculation

e “Guess” what to do with an instruction
— Start operation as soon as possible

— Check whether guess was right

* If so, complete the operation
* If not, roll-back and do the right thing

e Common to static and dynamic multiple issue

 Examples

— Speculate on branch outcome (Branch Prediction)
* Roll back if path taken is different

— Speculate on load
* Roll back if location is updated

Pipeline Hazard: Matching socks in later load
6PM 7 8 9 10 11 12 1 ZAM

3030 30 30 30 30 30 Time

'

"8 s

X~ 0 O —

0

°| B LR

d| 3 ﬁl
fw{j of A

A depends on D; stall since folder tied up;

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 ZAM

[-
7 303030 30303030 Time
a|d ' A
S| = .
k| O =5

\:CDQ\O
Gt Gt Gt G

A depends on D; rest continue; need more resources to
allow out-of-order

e All use OO0 since 2001

Out Of Order Intel

Microprocessor Year Clock Rate Pipeline Issue Out-of-order/ Cores Power
Stages width Speculation
i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
Core 2 Yorkfield 2008 2930 MHz 16 4 Yes 4 95W
Core i7 Gulftown 2010 3460 MHz 16 4 Yes 6 130W

Does Multiple Issue Work?

The BIG Picture

Yes, but not as much as we’d like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
— e.g., pointer aliasing

Some parallelism is hard to expose

— Limited window size during instruction issue
Memory delays and limited bandwidth

— Hard to keep pipelines full

Speculation can help if done well

“And in Conclusion..”

* Pipelining is an important form of ILP

e Challenge is (are?) hazards
— Forwarding helps w/many data hazards

— Delayed branch helps with control hazard in 5 stage
pipeline

— Load delay slot / interlock necessary
* More aggressive performance:

— Longer pipelines

— Superscalar

— Out-of-order execution

— Speculation

